PKA and AMPK Signaling Pathways Differentially Regulate Luteal Steroidogenesis

Emilia Przygrodzka, Xiaoying Hou, Pan Zhang, Michele R. Plewes, Rodrigo Franco, John S. Davis

Research output: Contribution to journalArticlepeer-review

18 Scopus citations


Luteinizing hormone (LH) via protein kinase A (PKA) triggers ovulation and formation of the corpus luteum, which arises from the differentiation of follicular granulosa and theca cells into large and small luteal cells, respectively. The small and large luteal cells produce progesterone, a steroid hormone required for establishment and maintenance of pregnancy. We recently reported on the importance of hormone-sensitive lipase (HSL, also known as LIPE) and lipid droplets for appropriate secretory function of the corpus luteum. These lipid-rich intracellular organelles store cholesteryl esters, which can be hydrolyzed by HSL to provide cholesterol, the main substrate necessary for progesterone synthesis. In the present study, we analyzed dynamic posttranslational modifications of HSL mediated by PKA and AMP-activated protein kinase (AMPK) as well as their effects on steroidogenesis in luteal cells. Our results revealed that AMPK acutely inhibits the stimulatory effects of LH/PKA on progesterone production without reducing levels of STAR, CYP11A1, and HSD3B proteins. Exogenous cholesterol reversed the negative effects of AMPK on LH-stimulated steroidogenesis, suggesting that AMPK regulates cholesterol availability in luteal cells. AMPK evoked inhibitory phosphorylation of HSL (Ser565). In contrast, LH/PKA decreased phosphorylation of AMPK at Thr172, a residue required for its activation. Additionally, LH/PKA increased phosphorylation of HSL at Ser563, which is crucial for enzyme activation, and decreased inhibitory phosphorylation of HSL at Ser565. The findings indicate that LH and AMPK exert opposite posttranslational modifications of HSL, presumptively regulating cholesterol availability for steroidogenesis.

Original languageEnglish (US)
Article numberbqab015
Issue number4
StatePublished - Apr 1 2021


  • corpus luteum
  • hormone-sensitive lipase
  • lipid droplets
  • luteinizing hormone
  • progesterone
  • protein kinase

ASJC Scopus subject areas

  • Endocrinology


Dive into the research topics of 'PKA and AMPK Signaling Pathways Differentially Regulate Luteal Steroidogenesis'. Together they form a unique fingerprint.

Cite this