Plant species identification using Elliptic Fourier leaf shape analysis

João Camargo Neto, George E. Meyer, David D. Jones, Ashok K. Samal

Research output: Contribution to journalArticlepeer-review

268 Scopus citations

Abstract

Elliptic Fourier (EF) and discriminant analyses were used to identify young soybean (Glycine max (L.) merrill), sunflower (Helianthus pumilus), redroot pigweed (Amaranthus retroflexus) and velvetleaf (Abutilon theophrasti Medicus) plants, based on leaf shape. Chain encoded, Elliptic Fourier harmonic functions were generated based on leaf boundary. A complexity index of the leaf shape was computed using the variation between consecutive EF functions. Principle component analysis was used to select the Fourier coefficients with the best discriminatory power. Canonical discriminant analysis was used to develop species identification models based on leaf shapes extracted from plant color images during the second and third weeks after germination. The classification results showed that plant species during the third week were successfully identified with an average of correct classification rate of 89.4%. The discriminant model correctly classified on average: 77.9% of redroot pigweed, 93.8% of sunflower, 89.4% of velvetleaf and 96.5% of soybean. Using all of the leaves extracted from the second and the third weeks, the overall classification accuracy was 89.2%. The discriminant model correctly classified 76.4% of redroot pigweed, 93.6% of sunflower, 81.6% of velvetleaf, 91.5% of soybean leaf extracted from trifoliolate and 90.9% of soybean unifoliolate leaves. The Elliptic Fourier shape feature analysis could be an important and accurate tool for weed species identification and mapping.

Original languageEnglish (US)
Pages (from-to)121-134
Number of pages14
JournalComputers and Electronics in Agriculture
Volume50
Issue number2
DOIs
StatePublished - Feb 2006

Keywords

  • Discriminant analysis
  • Elliptic Fourier
  • Leaves
  • Machine vision
  • Shape features

ASJC Scopus subject areas

  • Forestry
  • Agronomy and Crop Science
  • Computer Science Applications
  • Horticulture

Fingerprint

Dive into the research topics of 'Plant species identification using Elliptic Fourier leaf shape analysis'. Together they form a unique fingerprint.

Cite this