Plasma and vacuolar membrane sphingolipidomes: Composition and insights on the role of main molecular species

Laura Carmona-Salazar, Rebecca E. Cahoon, Jaime Gasca-Pineda, Ariadna González-Solís, Rosario Vera-Estrella, Victor Treviño, Edgar B. Cahoon, Marina Gavilanes-Ruiz

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


Lipid structures affect membrane biophysical properties such as thickness, stability, permeability, curvature, fluidity, asymmetry, and interdigitation, contributing to membrane function. Sphingolipids are abundant in plant endomembranes and plasma membranes (PMs) and comprise four classes: ceramides, hydroxyceramides, glucosylceramides, and glycosylinositolphosphoceramides (GIPCs). They constitute an array of chemical structures whose distribution in plant membranes is unknown. With the aim of describing the hydrophobic portion of sphingolipids, 18 preparations from microsomal (MIC), vacuolar (VM), PM, and detergent-resistant membranes (DRM) were isolated from Arabidopsis (Arabidopsis thaliana) leaves. Sphingolipid species, encompassing pairing of long-chain bases and fatty acids, were identified and quantified in these membranes. Sphingolipid concentrations were compared using univariate and multivariate analysis to assess sphingolipid diversity, abundance, and predominance across membranes. The four sphingolipid classes were present at different levels in each membrane: VM was enriched in glucosylceramides, hydroxyceramides, and GIPCs; PM in GIPCs, in agreement with their key role in signal recognition and sensing; and DRM in GIPCs, as reported by their function in nanodomain formation. While a total of 84 sphingolipid species was identified in MIC, VM, PM, and DRM, only 34 were selectively distributed in the four membrane types. Conversely, every membrane contained a different number of predominant species (11 in VM, 6 in PM, and 17 in DRM). This study reveals that MIC, VM, PM, and DRM contain the same set of sphingolipid species but every membrane source contains its own specific assortment based on the proportion of sphingolipid classes and on the predominance of individual species.

Original languageEnglish (US)
Pages (from-to)624-639
Number of pages16
JournalPlant physiology
Issue number1
StatePublished - May 2021

ASJC Scopus subject areas

  • Physiology
  • Genetics
  • Plant Science


Dive into the research topics of 'Plasma and vacuolar membrane sphingolipidomes: Composition and insights on the role of main molecular species'. Together they form a unique fingerprint.

Cite this