TY - JOUR
T1 - Poly(ADP-ribose) polymerase 1 activation is required for cisplatin nephrotoxicity
AU - Kim, Jinu
AU - Long, Kelly E.
AU - Tang, Kang
AU - Padanilam, Babu J.
PY - 2012/7/2
Y1 - 2012/7/2
N2 - Apoptosis, necrosis, and inflammation are hallmarks of cisplatin nephrotoxicity; however, the role and mechanisms of necrosis and inflammation remains undefined. As poly(ADP-ribose) polymerase 1 (PARP1) inhibition or its gene deletion is renoprotective in several renal disease models, we tested whether its activation may be involved in cisplatin nephrotoxicity. Parp1 deficiency was found to reduce cisplatin-induced kidney dysfunction, oxidative stress, and tubular necrosis, but not apoptosis. Moreover, neutrophil infiltration, activation of nuclear factor-B, c-Jun N-terminal kinases, p38 mitogen-activated protein kinase, and upregulation of proinflammatory genes were all abrogated by Parp1 deficiency. Using proximal tubule epithelial cells isolated from Parp1-deficient and wild-type mice and pharmacological inhibitors, we found evidence for a PARP1/Toll-like receptor 4/p38/tumor necrosis factor-α axis following cisplatin injury. Furthermore, pharmacological inhibition of PARP1 protected against cisplatin-induced kidney structural/functional damage and inflammation. Thus, our findings suggest that PARP1 activation is a primary signal and its inhibition/loss protects against cisplatin-induced nephrotoxicity. Targeting PARP1 may offer a potential therapeutic strategy for cisplatin nephrotoxicity.
AB - Apoptosis, necrosis, and inflammation are hallmarks of cisplatin nephrotoxicity; however, the role and mechanisms of necrosis and inflammation remains undefined. As poly(ADP-ribose) polymerase 1 (PARP1) inhibition or its gene deletion is renoprotective in several renal disease models, we tested whether its activation may be involved in cisplatin nephrotoxicity. Parp1 deficiency was found to reduce cisplatin-induced kidney dysfunction, oxidative stress, and tubular necrosis, but not apoptosis. Moreover, neutrophil infiltration, activation of nuclear factor-B, c-Jun N-terminal kinases, p38 mitogen-activated protein kinase, and upregulation of proinflammatory genes were all abrogated by Parp1 deficiency. Using proximal tubule epithelial cells isolated from Parp1-deficient and wild-type mice and pharmacological inhibitors, we found evidence for a PARP1/Toll-like receptor 4/p38/tumor necrosis factor-α axis following cisplatin injury. Furthermore, pharmacological inhibition of PARP1 protected against cisplatin-induced kidney structural/functional damage and inflammation. Thus, our findings suggest that PARP1 activation is a primary signal and its inhibition/loss protects against cisplatin-induced nephrotoxicity. Targeting PARP1 may offer a potential therapeutic strategy for cisplatin nephrotoxicity.
UR - http://www.scopus.com/inward/record.url?scp=84863326477&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863326477&partnerID=8YFLogxK
U2 - 10.1038/ki.2012.64
DO - 10.1038/ki.2012.64
M3 - Article
C2 - 22437413
AN - SCOPUS:84863326477
SN - 0085-2538
VL - 82
SP - 193
EP - 203
JO - Kidney International
JF - Kidney International
IS - 2
ER -