Purpose Perfusion and diffusion magnetic resonance imaging (MRI) provide important biomarkers for brain tumor analysis. Our aim was to investigate if regions of increased perfusion or tumor with restricted diffusion on the immediate post-operative MRI examination would be predictive of time to tumor progression in patients with high-grade gliomas. Materials and methods Twenty-three patients with high-grade gliomas were retrospectively analyzed. We measured the perfusion at the resection area and evaluated the presence or absence of the restricted diffusion in residual tumor masses. The associations of the perfusion, diffusion and contrast enhancement (delayed static enhancement (DSE)) characteristics with time to tumor progression were statistically calculated. We also evaluated if the location of the tumor progression was concordant to the areas of the elevated perfusion, tumor type restricted diffusion and enhancement. Results Patients with >200 days to progression are more likely to have no elevated relative cerebral blood volume (rCBV) ratio (p = 0.0004), no tumor restriction (p = 0.024), and no DSE (p = 0.052). The elevated mean rCBV ratio (p<0.001) and tumor type restricted diffusion (p = 0.002) were significantly associated with a higher risk of progression. All cases with rCBV ratio of >1.5 progressed in 275 days or earlier. Tumors tended to progress at the area where patients with post-operative MRIs showed elevated perfusion (p = 0.006), tumor-type restricted diffusion (p = 0.005) and DSE (p = 0.008). Conclusions Post-operative analysis of rCBV, tumor type restricted diffusion and enhancement characteristics are predictive of time to progression, risk of progression and where tumor progression is likely to occur.

Original languageEnglish (US)
Article numbere0213905
JournalPloS one
Issue number3
StatePublished - Mar 2019

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Post-operative perfusion and diffusion MR imaging and tumor progression in high-grade gliomas'. Together they form a unique fingerprint.

Cite this