TY - JOUR
T1 - Predicting unplanned medical visits among patients with diabetes
T2 - translation from machine learning to clinical implementation
AU - Selya, Arielle
AU - Anshutz, Drake
AU - Griese, Emily
AU - Weber, Tess L.
AU - Hsu, Benson
AU - Ward, Cheryl
N1 - Funding Information:
This work was supported by an award from the Sanford Data Collaborative, and by the National Institute for General Medical Sciences (NIGMS), Grant No. 1P20GM121341-01. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Background: Diabetes is a medical and economic burden in the United States. In this study, a machine learning predictive model was developed to predict unplanned medical visits among patients with diabetes, and findings were used to design a clinical intervention in the sponsoring healthcare organization. This study presents a case study of how predictive analytics can inform clinical actions, and describes practical factors that must be incorporated in order to translate research into clinical practice. Methods: Data were drawn from electronic medical records (EMRs) from a large healthcare organization in the Northern Plains region of the US, from adult (≥ 18 years old) patients with type 1 or type 2 diabetes who received care at least once during the 3-year period. A variety of machine-learning classification models were run using standard EMR variables as predictors (age, body mass index (BMI), systolic blood pressure (BP), diastolic BP, low-density lipoprotein, high-density lipoprotein (HDL), glycohemoglobin (A1C), smoking status, number of diagnoses and number of prescriptions). The best-performing model after cross-validation testing was analyzed to identify strongest predictors. Results: The best-performing model was a linear-basis support vector machine, which achieved a balanced accuracy (average of sensitivity and specificity) of 65.7%. This model outperformed a conventional logistic regression by 0.4 percentage points. A sensitivity analysis identified BP and HDL as the strongest predictors, such that disrupting these variables with random noise decreased the model’s overall balanced accuracy by 1.3 and 1.4 percentage points, respectively. These recommendations, along with stakeholder engagement, behavioral economics strategies, and implementation science principles helped to inform the design of a clinical intervention targeting behavioral changes. Conclusion: Our machine-learning predictive model more accurately predicted unplanned medical visits among patients with diabetes, relative to conventional models. Post-hoc analysis of the model was used for hypothesis generation, namely that HDL and BP are the strongest contributors to unplanned medical visits among patients with diabetes. These findings were translated into a clinical intervention now being piloted at the sponsoring healthcare organization. In this way, this predictive model can be used in moving from prediction to implementation and improved diabetes care management in clinical settings.
AB - Background: Diabetes is a medical and economic burden in the United States. In this study, a machine learning predictive model was developed to predict unplanned medical visits among patients with diabetes, and findings were used to design a clinical intervention in the sponsoring healthcare organization. This study presents a case study of how predictive analytics can inform clinical actions, and describes practical factors that must be incorporated in order to translate research into clinical practice. Methods: Data were drawn from electronic medical records (EMRs) from a large healthcare organization in the Northern Plains region of the US, from adult (≥ 18 years old) patients with type 1 or type 2 diabetes who received care at least once during the 3-year period. A variety of machine-learning classification models were run using standard EMR variables as predictors (age, body mass index (BMI), systolic blood pressure (BP), diastolic BP, low-density lipoprotein, high-density lipoprotein (HDL), glycohemoglobin (A1C), smoking status, number of diagnoses and number of prescriptions). The best-performing model after cross-validation testing was analyzed to identify strongest predictors. Results: The best-performing model was a linear-basis support vector machine, which achieved a balanced accuracy (average of sensitivity and specificity) of 65.7%. This model outperformed a conventional logistic regression by 0.4 percentage points. A sensitivity analysis identified BP and HDL as the strongest predictors, such that disrupting these variables with random noise decreased the model’s overall balanced accuracy by 1.3 and 1.4 percentage points, respectively. These recommendations, along with stakeholder engagement, behavioral economics strategies, and implementation science principles helped to inform the design of a clinical intervention targeting behavioral changes. Conclusion: Our machine-learning predictive model more accurately predicted unplanned medical visits among patients with diabetes, relative to conventional models. Post-hoc analysis of the model was used for hypothesis generation, namely that HDL and BP are the strongest contributors to unplanned medical visits among patients with diabetes. These findings were translated into a clinical intervention now being piloted at the sponsoring healthcare organization. In this way, this predictive model can be used in moving from prediction to implementation and improved diabetes care management in clinical settings.
KW - Diabetes
KW - Machine learning
KW - Predictive model
KW - Unplanned medical visits
UR - http://www.scopus.com/inward/record.url?scp=85103746381&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103746381&partnerID=8YFLogxK
U2 - 10.1186/s12911-021-01474-1
DO - 10.1186/s12911-021-01474-1
M3 - Article
C2 - 33789660
AN - SCOPUS:85103746381
SN - 1472-6947
VL - 21
JO - BMC Medical Informatics and Decision Making
JF - BMC Medical Informatics and Decision Making
IS - 1
M1 - 111
ER -