Abstract
Peptide binding to MHC is critical for antigen recognition by T-cells. To facilitate vaccine design, computational methods have been developed for predicting MHC-binding peptides, which achieve impressive prediction accuracies of 70-90% for binders and 40-80% for non-binders. These methods have been developed for peptides of fixed lengths, for a limited number of alleles, trained from small number of non-binders, and in some cases based straightforwardly on sequence. These limit prediction coverage and accuracy particularly for non-binders. It is desirable to explore methods that predict binders of flexible lengths from sequence-derived physicochemical properties and trained from diverse sets of non-binders. This work explores support vector machines (SVM) as such a method for developing prediction systems of 18 MHC class I and 12 class II alleles by using 4208-3252 binders and 234,333-168,793 non-binders, and evaluated by an independent set of 545-476 binders and 110,564-84,430 non-binders. Binder accuracies are 86-99% for 25 and 70-80% for 5 alleles, non-binder accuracies are 96-99% for 30 alleles. Binder accuracies are comparable and non-binder accuracies substantially improved against other results. Our method correctly predicts 73.3% of the 15 newly-published epitopes in the last 4 months of 2005. Of the 251 recently-published HLA-A*0201 non-epitopes predicted as binders by other methods, 63 are predicted as binders by our method. Screening of HIV-1 genome shows that, compared to other methods, a comparable percentage (75-100%) of its known epitopes is correctly predicted, while a lower percentage (0.01-5% for 24 and 5-8% for 6 alleles) of its constituent peptides are predicted as binders. Our software can be accessed at http://bidd.cz3.nus.edu.sg/mhc/.
Original language | English (US) |
---|---|
Pages (from-to) | 866-877 |
Number of pages | 12 |
Journal | Molecular Immunology |
Volume | 44 |
Issue number | 5 |
DOIs | |
State | Published - Feb 2007 |
Externally published | Yes |
Keywords
- Epitopes
- MHC binding peptide
- SVM
- Vaccine
ASJC Scopus subject areas
- Immunology
- Molecular Biology