Primary motor cortex in stroke: A functional MRI-guided proton mr spectroscopic study

Carmen M. Cirstea, William M. Brooks, Sorin C. Craciunas, Elena A. Popescu, In Young Choi, Phil Lee, Ali Bani-Ahmed, Hung Wen Yeh, Cary R. Savage, Leonardo G. Cohen, Randolph J. Nudo

Research output: Contribution to journalArticle

29 Scopus citations

Abstract

Background and Purpose- Our goal was to investigate whether certain metabolites, specific to neurons, glial cells, or the neuronal-glial neurotransmission system, in primary motor cortices (M1), are altered and correlated with clinical motor severity in chronic stroke. Methods- Fourteen survivors of a single ischemic stroke located outside the M1 and 14 age-matched healthy control subjects were included. At >6 months after stroke, N-acetylaspartate, myo-inositol, and glutamate/glutamine were measured using proton magnetic resonance spectroscopic imaging (in-plane resolution=5×5 mm2) in radiologically normal-appearing gray matter of the hand representation area, identified by functional MRI, in each M1. Metabolite concentrations and analyses of metabolite correlations within M1 were determined. Relationships between metabolite concentrations and arm motor impairment were also evaluated. Results- The stroke survivors showed lower N-acetylaspartate and higher myo-inositol across ipsilesional and contralesional M1 compared with control subjects. Significant correlations between N-acetylaspartate and glutamate/glutamine were found in either M1. Ipsilesional N-acetylaspartate and glutamate/glutamine were positively correlated with arm motor impairment and contralesional N-acetylaspartate with time after stroke. Conclusions- Our preliminary data demonstrated significant alterations of neuronal-glial interactions in spared M1 with the ipsilesional alterations related to stroke severity and contralesional alterations to stroke duration. Thus, MR spectroscopy might be a sensitive method to quantify relevant metabolite changes after stroke and consequently increase our knowledge of the factors leading from these changes in spared motor cortex to motor impairment after stroke.

Original languageEnglish (US)
Pages (from-to)1004-1009
Number of pages6
JournalStroke
Volume42
Issue number4
DOIs
StatePublished - Apr 2011

Keywords

  • H-MRS
  • motor impairment
  • plasticity
  • primary motor cortex
  • stroke

ASJC Scopus subject areas

  • Clinical Neurology
  • Cardiology and Cardiovascular Medicine
  • Advanced and Specialized Nursing

Fingerprint Dive into the research topics of 'Primary motor cortex in stroke: A functional MRI-guided proton mr spectroscopic study'. Together they form a unique fingerprint.

  • Cite this

    Cirstea, C. M., Brooks, W. M., Craciunas, S. C., Popescu, E. A., Choi, I. Y., Lee, P., Bani-Ahmed, A., Yeh, H. W., Savage, C. R., Cohen, L. G., & Nudo, R. J. (2011). Primary motor cortex in stroke: A functional MRI-guided proton mr spectroscopic study. Stroke, 42(4), 1004-1009. https://doi.org/10.1161/STROKEAHA.110.601047