TY - JOUR
T1 - Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics
AU - Krumbeck, Janina A.
AU - Rasmussen, Heather E.
AU - Hutkins, Robert W.
AU - Clarke, Jennifer
AU - Shawron, Krista
AU - Keshavarzian, Ali
AU - Walter, Jens
N1 - Funding Information:
This work was supported by a USDA AFRI Grant #2012-67017-19344 and by funding from the Nebraska Research Initiative. J.W. acknowledges support through the Campus Alberta Innovation Program.
Publisher Copyright:
© 2018 The Author(s).
PY - 2018/6/28
Y1 - 2018/6/28
N2 - Background: One way to improve both the ecological performance and functionality of probiotic bacteria is by combining them with a prebiotic in the form of a synbiotic. However, the degree to which such synbiotic formulations improve probiotic strain functionality in humans has not been tested systematically. Our goal was to use a randomized, double-blind, placebo-controlled, parallel-arm clinical trial in obese humans to compare the ecological and physiological impact of the prebiotic galactooligosaccharides (GOS) and the probiotic strains Bifidobacterium adolescentis IVS-1 (autochthonous and selected via in vivo selection) and Bifidobacterium lactis BB-12 (commercial probiotic allochthonous to the human gut) when used on their own or as synbiotic combinations. After 3 weeks of consumption, strain-specific quantitative real-time PCR and 16S rRNA gene sequencing were performed on fecal samples to assess changes in the microbiota. Intestinal permeability was determined by measuring sugar recovery in urine by GC after consumption of a sugar mixture. Serum-based endotoxin exposure was also assessed. Results: IVS-1 reached significantly higher cell numbers in fecal samples than BB-12 (P < 0.01) and, remarkably, its administration induced an increase in total bifidobacteria that was comparable to that of GOS. Although GOS showed a clear bifidogenic effect on the resident gut microbiota, both probiotic strains showed only a non-significant trend of higher fecal cell numbers when administered with GOS. Post-aspirin sucralose:lactulose ratios were reduced in groups IVS-1 (P = 0.050), IVS-1 + GOS (P = 0.022), and GOS (P = 0.010), while sucralose excretion was reduced with BB-12 (P = 0.002) and GOS (P = 0.020), indicating improvements in colonic permeability but no synergistic effects. No changes in markers of endotoxemia were observed. Conclusion: This study demonstrated that "autochthony" of the probiotic strain has a larger effect on ecological performance than the provision of a prebiotic substrate, likely due to competitive interactions with members of the resident microbiota. Although the synbiotic combinations tested in this study did not demonstrate functional synergism, our findings clearly showed that the pro- and prebiotic components by themselves improved markers of colonic permeability, providing a rational for their use in pathologies with an underlying leakiness of the gut.
AB - Background: One way to improve both the ecological performance and functionality of probiotic bacteria is by combining them with a prebiotic in the form of a synbiotic. However, the degree to which such synbiotic formulations improve probiotic strain functionality in humans has not been tested systematically. Our goal was to use a randomized, double-blind, placebo-controlled, parallel-arm clinical trial in obese humans to compare the ecological and physiological impact of the prebiotic galactooligosaccharides (GOS) and the probiotic strains Bifidobacterium adolescentis IVS-1 (autochthonous and selected via in vivo selection) and Bifidobacterium lactis BB-12 (commercial probiotic allochthonous to the human gut) when used on their own or as synbiotic combinations. After 3 weeks of consumption, strain-specific quantitative real-time PCR and 16S rRNA gene sequencing were performed on fecal samples to assess changes in the microbiota. Intestinal permeability was determined by measuring sugar recovery in urine by GC after consumption of a sugar mixture. Serum-based endotoxin exposure was also assessed. Results: IVS-1 reached significantly higher cell numbers in fecal samples than BB-12 (P < 0.01) and, remarkably, its administration induced an increase in total bifidobacteria that was comparable to that of GOS. Although GOS showed a clear bifidogenic effect on the resident gut microbiota, both probiotic strains showed only a non-significant trend of higher fecal cell numbers when administered with GOS. Post-aspirin sucralose:lactulose ratios were reduced in groups IVS-1 (P = 0.050), IVS-1 + GOS (P = 0.022), and GOS (P = 0.010), while sucralose excretion was reduced with BB-12 (P = 0.002) and GOS (P = 0.020), indicating improvements in colonic permeability but no synergistic effects. No changes in markers of endotoxemia were observed. Conclusion: This study demonstrated that "autochthony" of the probiotic strain has a larger effect on ecological performance than the provision of a prebiotic substrate, likely due to competitive interactions with members of the resident microbiota. Although the synbiotic combinations tested in this study did not demonstrate functional synergism, our findings clearly showed that the pro- and prebiotic components by themselves improved markers of colonic permeability, providing a rational for their use in pathologies with an underlying leakiness of the gut.
KW - Allochthonous
KW - Autochthonous
KW - Bifidobacteria
KW - Bifidobacterium
KW - Galactooligosaccharide
KW - Gut barrier function
KW - Obesity
KW - Prebiotic
KW - Probiotic
KW - Synbiotic
UR - http://www.scopus.com/inward/record.url?scp=85049211175&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85049211175&partnerID=8YFLogxK
U2 - 10.1186/s40168-018-0494-4
DO - 10.1186/s40168-018-0494-4
M3 - Article
C2 - 29954454
AN - SCOPUS:85049211175
SN - 2049-2618
VL - 6
JO - Microbiome
JF - Microbiome
IS - 1
M1 - 121
ER -