TY - GEN
T1 - PROCESS MAPPING OF ADDITIVELY-MANUFACTURED METALLIC WICKS THROUGH SURROGATE MODELING
AU - Borumand, Mohammad
AU - Borujeni, Sima Esfandiarpour
AU - Nannapaneni, Saideep
AU - Ausherman, Moriah
AU - Madiraddy, Guru
AU - Sealy, Michael
AU - Hwang, Gisuk
N1 - Publisher Copyright:
Copyright © 2021 by ASME
PY - 2021
Y1 - 2021
N2 - Tailored wick structures are essential to develop efficient two-phase thermal management systems in various engineering applications, however, manufacturing a geometrically-complex wick is challenging using conventional manufacturing processes due to limited manufacturability and poor cost effectiveness. Additive manufacturing is an ideal alternative, however, the state-of-the-art metal three-dimensional printers have poor manufacturability when depositing pre-designed porous wicks with pore sizes below 100 μm. In this paper, a powder bed fusion 3D printer (Matsuura Lumex Avance-25) was employed to fabricate metallic wicks through partial sintering for pore sizes below 100 μm with data-driven control of process parameters. Hatch spacing and scan speed were selected as the two main AM process parameters to adjust. Due to the unavailability of process maps between the process parameters and properties of printed metallic wick structures, different surrogate-based models were employed to identify the combinations of the two process parameters that result in improved manufacturability of wick structures. Since the generation of training points for surrogate model training through experimentation is expensive and time-consuming, Bayesian optimization was used for sequential and intelligent selection of training points that provide maximum information gain regarding the relationships between the process parameters and the manufacturability of a 3D printed wick structure. The relationship between the required number of training points and model prediction accuracy was investigated. The AM parameters' ranges were discretized using six values of hatch spacing and seven values of scan speed, which resulted in a total of 42 combinations across the two parameters. Preliminary results conclude that 80% prediction accuracy is achievable with approximately forty training points (only 10% of total combinations). This study provides insights into the selection of optimal process parameters for the desired additively-manufactured wick structure performance.
AB - Tailored wick structures are essential to develop efficient two-phase thermal management systems in various engineering applications, however, manufacturing a geometrically-complex wick is challenging using conventional manufacturing processes due to limited manufacturability and poor cost effectiveness. Additive manufacturing is an ideal alternative, however, the state-of-the-art metal three-dimensional printers have poor manufacturability when depositing pre-designed porous wicks with pore sizes below 100 μm. In this paper, a powder bed fusion 3D printer (Matsuura Lumex Avance-25) was employed to fabricate metallic wicks through partial sintering for pore sizes below 100 μm with data-driven control of process parameters. Hatch spacing and scan speed were selected as the two main AM process parameters to adjust. Due to the unavailability of process maps between the process parameters and properties of printed metallic wick structures, different surrogate-based models were employed to identify the combinations of the two process parameters that result in improved manufacturability of wick structures. Since the generation of training points for surrogate model training through experimentation is expensive and time-consuming, Bayesian optimization was used for sequential and intelligent selection of training points that provide maximum information gain regarding the relationships between the process parameters and the manufacturability of a 3D printed wick structure. The relationship between the required number of training points and model prediction accuracy was investigated. The AM parameters' ranges were discretized using six values of hatch spacing and seven values of scan speed, which resulted in a total of 42 combinations across the two parameters. Preliminary results conclude that 80% prediction accuracy is achievable with approximately forty training points (only 10% of total combinations). This study provides insights into the selection of optimal process parameters for the desired additively-manufactured wick structure performance.
KW - 3D printed wick
KW - Additive manufacturing
KW - Bayesian optimization
KW - Data classification
KW - Gaussian
KW - Laser powder bed fusion
KW - Porous materials
KW - Random forest
KW - Support vector machine
UR - http://www.scopus.com/inward/record.url?scp=85124389696&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85124389696&partnerID=8YFLogxK
U2 - 10.1115/IMECE2021-71241
DO - 10.1115/IMECE2021-71241
M3 - Conference contribution
AN - SCOPUS:85124389696
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Advanced Manufacturing
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2021 International Mechanical Engineering Congress and Exposition, IMECE 2021
Y2 - 1 November 2021 through 5 November 2021
ER -