TY - JOUR
T1 - Productivity, respiration, and light-response parameters of world grassland and agroecosystems derived from flux-tower measurements
AU - Gilmanov, Tagir G.
AU - Aires, L.
AU - Barcza, Z.
AU - Baron, V. S.
AU - Belelli, L.
AU - Beringer, J.
AU - Billesbach, D.
AU - Bonal, D.
AU - Bradford, J.
AU - Ceschia, E.
AU - Cook, D.
AU - Corradi, C.
AU - Frank, A.
AU - Gianelle, D.
AU - Gimeno, C.
AU - Gruenwald, T.
AU - Guo, Haiqiang
AU - Hanan, N.
AU - Haszpra, L.
AU - Heilman, J.
AU - Jacobs, A.
AU - Jones, M. B.
AU - Johnson, D. A.
AU - Kiely, G.
AU - Li, Shenggong
AU - Magliulo, V.
AU - Moors, E.
AU - Nagy, Z.
AU - Nasyrov, M.
AU - Owensby, C.
AU - Pinter, K.
AU - Pio, C.
AU - Reichstein, M.
AU - Sanz, M. J.
AU - Scott, R.
AU - Soussana, J. F.
AU - Stoy, P. C.
AU - Svejcar, T.
AU - Tuba, Z.
AU - Zhou, Guangsheng
N1 - Funding Information:
K. Akshalov, 4 V. Allard, 3,4 C. Ammann, 3 M. Aubinet, 3 M. Aurela, 3 J. Baker, 3,4 D. Baldocchi, 3 J. Balogh, 3 M. Balzarolo, 3 C. Bernacchi, 3,4 C. Bernhofer, 3 P. Béziat, 3 F. Bosveld, 3 K. Brehe, 4 N. Buchmann, 3 P. Cellier, 3 Shiping Chen, 3 R. Coulter, 3 R. Czerny, 3 E. Dellwik, 3 A. Detwiler, 4 A. J. Dolman, 3 W. Dugas, 2 M. Durikov, 4 J. Elbers, 3 W. Emmerich, 2 W. Eugster, 3,4 D. Fitzjarrald, 3 L. B. Flanagan, 3,4 J. Fuhrer, 3 T. Griffis, 3,4 M. Haferkamp, 2 R. Harding, 3 A. Hensen, 3 M. Heuer, 3,4 S. Hollinger, 3 D. Janous, 3 W. Jans, 3 T. Kato, 3 G. Katul, 3 D. Kliche, 4 W. Kutsch, 3 G. Lanigan, 3 T. Laurila, 4 P. Leahy, 3 C. Lloyd, 3 A. Lohila, 4 A. Manzi, 3 M. Marek, 3 R. Matamala, 3,4 T. Meyers, 3,4 P. Mielnick, 2 A. Miyata, 3 J. Morgan, 2 C. Moureaux, 3,4 K. A. Novick, 3 J. Olejnik, 3 J. E. Olesen, 3 W. Oechel, 3 D. Papale, 3 J. Prueger, 4 A. Raschi, 3 , C. Rebmann, 3 H. da Rocha, 3 N. Rogiers, 3,4 N. Saliendra, 2 K. Schelde, 3 R.H. Skinner, 4 H. Soegaard, 3 M. Sutton, 3 A. Suyker, 3 M. Torn, 4 M. Urbaniak, 3 S. Verma, 3 M. Waterloo, 3 G. Wohlfahrt, 3,4 and B. Zhao. 3 The authors thank managers of the RANGEFLUX database Patricia Mielnick and the FLUXNET database Dario Papale, Markus Reichstein, and Deb Agarwal for assistance with updating tower flux data. We also thank Mary Brooke McEachern for help with editing the manuscript of the article. FLUXNET data used in this work are the outcome of the La Thuile FLUXNET workshop 2007, which would not have been possible without the financial support provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, and US Department of Energy. Moreover, we acknowledge databasing and technical support from Surface Energy Balance Network (SEBN, formerly GEWEX), Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California—Berkeley, and University of Virginia. The following networks participated with flux data: AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, ChinaFlux, Fluxnet-Canada, KoFlux, LBA, NECC, OzFlux, TCOS-Siberia, USCCC. AmeriFlux grant: US Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program (DE-FG02-04ER63917).
PY - 2010/1
Y1 - 2010/1
N2 - Grasslands and agroecosystems occupy one-third of the terrestrial area, but their contribution to the global carbon cycle remains uncertain. We used a set of 316 site-years of CO2 exchange measurements to quantify gross primary productivity, respiration, and light-response parameters of grasslands, shrublands/savanna, wetlands, and cropland ecosystems worldwide. We analyzed data from 72 global flux-tower sites partitioned into gross photosynthesis and ecosystem respiration with the use of the light-response method (Gilmanov, T. G., D. A. Johnson, and N. Z. Saliendra. 2003. Growing season CO2 fluxes in a sagebrush-steppe ecosystem in Idaho: Bowen ratio/energy balance measurements and modeling. Basic and Applied Ecology 4:167-183) from the RANGEFLUX and WORLDGRASSAGRIFLUX data sets supplemented by 46 sites from the FLUXNET La Thuile data set partitioned with the use of the temperature-response method (Reichstein, M., E. Falge, D. Baldocchi, D. Papale, R. Valentini, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, M. Falk, T. Gilmanov, A. Granier, T. Grüwald, K. Havráková, D. Janous, A. Knohl, T. Laurela, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J. M. Ourcival, D. Perrin, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, and D. Yakir. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11:1424-1439). Maximum values of the quantum yield (α=75 mmol·mol-1), photosynthetic capacity (Amax=3.4 mg CO2·m-2·s -1), gross photosynthesis (Pg,max=116 g CO 2·m-2·d-1), and ecological light-use efficiency (εecol=59 mmol·mol-1) of managed grasslands and high-production croplands exceeded those of most forest ecosystems, indicating the potential of nonforest ecosystems for uptake of atmospheric CO2. Maximum values of gross primary production (8600 g CO2·m-2·yr-1), total ecosystem respiration (7900 g CO2·m-2·-1), and net CO2 exchange (2400 g CO2· -2·-1) were observed for intensively managed grasslands and high-yield crops, and are comparable to or higher than those for forest ecosystems, excluding some tropical forests. On average, 80% of the nonforest sites were apparent sinks for atmospheric CO2, with mean net uptake of 700 g CO2·m-2·yr-1 for intensive grasslands and 933 g CO2· -2·-1 for croplands. However, part of these apparent sinks is accumulated in crops and forage, which are carbon pools that are harvested, transported, and decomposed off site. Therefore, although agricultural fields may be predominantly sinks for atmospheric CO2, this does not imply that they are necessarily increasing their carbon stock.
AB - Grasslands and agroecosystems occupy one-third of the terrestrial area, but their contribution to the global carbon cycle remains uncertain. We used a set of 316 site-years of CO2 exchange measurements to quantify gross primary productivity, respiration, and light-response parameters of grasslands, shrublands/savanna, wetlands, and cropland ecosystems worldwide. We analyzed data from 72 global flux-tower sites partitioned into gross photosynthesis and ecosystem respiration with the use of the light-response method (Gilmanov, T. G., D. A. Johnson, and N. Z. Saliendra. 2003. Growing season CO2 fluxes in a sagebrush-steppe ecosystem in Idaho: Bowen ratio/energy balance measurements and modeling. Basic and Applied Ecology 4:167-183) from the RANGEFLUX and WORLDGRASSAGRIFLUX data sets supplemented by 46 sites from the FLUXNET La Thuile data set partitioned with the use of the temperature-response method (Reichstein, M., E. Falge, D. Baldocchi, D. Papale, R. Valentini, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, M. Falk, T. Gilmanov, A. Granier, T. Grüwald, K. Havráková, D. Janous, A. Knohl, T. Laurela, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J. M. Ourcival, D. Perrin, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, and D. Yakir. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11:1424-1439). Maximum values of the quantum yield (α=75 mmol·mol-1), photosynthetic capacity (Amax=3.4 mg CO2·m-2·s -1), gross photosynthesis (Pg,max=116 g CO 2·m-2·d-1), and ecological light-use efficiency (εecol=59 mmol·mol-1) of managed grasslands and high-production croplands exceeded those of most forest ecosystems, indicating the potential of nonforest ecosystems for uptake of atmospheric CO2. Maximum values of gross primary production (8600 g CO2·m-2·yr-1), total ecosystem respiration (7900 g CO2·m-2·-1), and net CO2 exchange (2400 g CO2· -2·-1) were observed for intensively managed grasslands and high-yield crops, and are comparable to or higher than those for forest ecosystems, excluding some tropical forests. On average, 80% of the nonforest sites were apparent sinks for atmospheric CO2, with mean net uptake of 700 g CO2·m-2·yr-1 for intensive grasslands and 933 g CO2· -2·-1 for croplands. However, part of these apparent sinks is accumulated in crops and forage, which are carbon pools that are harvested, transported, and decomposed off site. Therefore, although agricultural fields may be predominantly sinks for atmospheric CO2, this does not imply that they are necessarily increasing their carbon stock.
KW - croplands
KW - ecosystem respiration
KW - grasslands
KW - gross primary production
KW - light-response function method
UR - http://www.scopus.com/inward/record.url?scp=79551487878&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79551487878&partnerID=8YFLogxK
U2 - 10.2111/REM-D-09-00072.1
DO - 10.2111/REM-D-09-00072.1
M3 - Article
AN - SCOPUS:79551487878
SN - 1550-7424
VL - 63
SP - 16
EP - 39
JO - Rangeland Ecology and Management
JF - Rangeland Ecology and Management
IS - 1
ER -