Properties of area 17/18 border neurons contributing to the visual transcallosal pathway in the cat

M. E. McCourt, J. Thalluri, G. H. Henry

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


In a series of physiological experiments, a total of 203 neurons at the Area 17/18 border were recorded with a callosal link either demonstrated by antidromic or transsynaptic activation from stimulating electrodes located in the homotopic contralateral hemisphere (CH), or in the splenial segment of the corpus callosum (CC). Forty-four percent of the transcallosal cells could also be driven from stimulating electrodes in or just above the lateral geniculate nucleus (OR1). The majority (69%) of transcallosal neurons were classifiable as belonging to the complex family (B and C cells) and most of these were found in the supragranular laminae and in lamina 4A. The ocular dominance distribution of transcallosal cells was trimodal, consisting of roughly equal numbers of monocularly dominated and binocularly balanced neurons. Estimates of conduction time and synaptic delay were obtained for neurons driven from CH, CC, and from OR1, and in most instances the response latency was short enough to suggest a monosynaptic input from either the ipsi- or contralateral hemisphere. The distribution of transcallosal conduction times showed that S cells, as a class, had significantly faster conduction than cells of the complex family but otherwise there was no obvious signs of multimodality in the distribution curve. An analysis of the synaptic delays in transcallosal activation produced a mean of 0.6 to 0.7 ms but some were too short to be consistent with a transsynaptic drive, suggesting that some cells with an antidromic drive may have been included in the transsynaptic category. Results are interpreted in terms of the contribution made by the corpus callosum to stereoscopic vision.

Original languageEnglish (US)
Pages (from-to)83-98
Number of pages16
JournalVisual Neuroscience
Issue number1
StatePublished - Jul 1990
Externally publishedYes


  • Cat
  • Electrical stimulation Receptive fields
  • Response latency
  • Transcallosal pathways
  • Visual cortex

ASJC Scopus subject areas

  • Physiology
  • Sensory Systems


Dive into the research topics of 'Properties of area 17/18 border neurons contributing to the visual transcallosal pathway in the cat'. Together they form a unique fingerprint.

Cite this