Providing variable levels of security in quantum cryptography

Abhishek Parakh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations


Quantum cryptography provides perfect secrecy if the key exchanged is used for one-time-pad encryption. However, this requires very long keys which are not practical in most scenarios. Further, the key exchange bit-rate for quantum key distribution is very low. Consequently, often quantum key distribution algorithms only exchange (128, 192 or 256 bit) AES keys and then AES is used for data encryption. While Grover's algorithm will force us to only use AES-256 and does not pose a catastrophic failure to AES, AES does not provide provable security. In this paper, we discuss methods that provide provable security but at the same time the key lengths may be controlled to practical levels. Difficulty of breaking the cipher is directly proportional to the key length and depends on the specific algorithm employed. The key idea is that key lengths can be tweaked such that an acceptable and provable level of security is achieved and therefore the cipher is not reliant on any assumptions for security. The paper will discuss different ways of achieving the above goal.

Original languageEnglish (US)
Title of host publicationQuantum Communications and Quantum Imaging XVI
EditorsRonald E. Meyers, Yanhua Shih, Keith S. Deacon
ISBN (Electronic)9781510621138
StatePublished - 2018
EventQuantum Communications and Quantum Imaging XVI 2018 - San Diego, United States
Duration: Aug 19 2018Aug 20 2018

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X


OtherQuantum Communications and Quantum Imaging XVI 2018
Country/TerritoryUnited States
CitySan Diego


  • error correction codes
  • polynomial interpolation
  • quantum cryptography
  • quantum key distribution
  • variable security

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Providing variable levels of security in quantum cryptography'. Together they form a unique fingerprint.

Cite this