TY - JOUR
T1 - Pseudo-esterase activity of human albumin
T2 - Slow turnover on tyrosine 411 and stable acetylation of 82 residues including 59 lysines
AU - Lockridge, Oksana
AU - Xue, Weihua
AU - Gaydess, Andrea
AU - Grigoryan, Hasmik
AU - Ding, Shi Jian
AU - Schopfer, Lawrence M.
AU - Hinrichs, Steven H.
AU - Masson, Patrick
PY - 2008/8/15
Y1 - 2008/8/15
N2 - Human albumin is thought to hydrolyze esters because multiple equivalents of product are formed for each equivalent of albumin. Esterase activity with p-nitrophenyl acetate has been attributed to turnover at tyrosine 411. However, p-nitrophenyl acetate creates multiple, stable, acetylated adducts, a property contrary to turnover. Our goal was to identify residues that become acetylated by p-nitrophenyl acetate and determine the relationship between stable adduct formation and turnover. Fatty acid-free human albumin was treated with 0.5mM p-nitrophenyl acetate for 5 min to 2 weeks, or with 10mM p-nitrophenyl acetate for 48 h to 2 weeks. Aliquots were digested with pepsin, trypsin, or GluC and analyzed by mass spectrometry to identify labeled residues. Only Tyr-411 was acetylated within the first 5 min of reaction with 0.5 mM p-nitrophenyl acetate. After 0.5-6 h there was partial acetylation of 16-17 residues including Asp-1, Lys-4, Lys-12, Tyr-411, Lys-413, and Lys-414. Treatment with 10 mM p-nitrophenyl acetate resulted in acetylation of 59 lysines, 10 serines, 8 threonines, 4 tyrosines, and Asp-1. When Tyr-411 was blocked with diisopropylfluorophosphate or chlorpyrifos oxon, albumin had normal esterase activity with β-naphthyl acetate as visualized on a nondenaturing gel. However, after 82 residues had been acetylated, esterase activity was almost completely inhibited. The half-life for deacetylation of Tyr-411 at pH 8.0, 22 °C was 61 ± 4 h. Acetylated lysines formed adducts that were even more stable. In conclusion, the pseudo-esterase activity of albumin is the result of irreversible acetylation of 82 residues and is not the result of turnover.
AB - Human albumin is thought to hydrolyze esters because multiple equivalents of product are formed for each equivalent of albumin. Esterase activity with p-nitrophenyl acetate has been attributed to turnover at tyrosine 411. However, p-nitrophenyl acetate creates multiple, stable, acetylated adducts, a property contrary to turnover. Our goal was to identify residues that become acetylated by p-nitrophenyl acetate and determine the relationship between stable adduct formation and turnover. Fatty acid-free human albumin was treated with 0.5mM p-nitrophenyl acetate for 5 min to 2 weeks, or with 10mM p-nitrophenyl acetate for 48 h to 2 weeks. Aliquots were digested with pepsin, trypsin, or GluC and analyzed by mass spectrometry to identify labeled residues. Only Tyr-411 was acetylated within the first 5 min of reaction with 0.5 mM p-nitrophenyl acetate. After 0.5-6 h there was partial acetylation of 16-17 residues including Asp-1, Lys-4, Lys-12, Tyr-411, Lys-413, and Lys-414. Treatment with 10 mM p-nitrophenyl acetate resulted in acetylation of 59 lysines, 10 serines, 8 threonines, 4 tyrosines, and Asp-1. When Tyr-411 was blocked with diisopropylfluorophosphate or chlorpyrifos oxon, albumin had normal esterase activity with β-naphthyl acetate as visualized on a nondenaturing gel. However, after 82 residues had been acetylated, esterase activity was almost completely inhibited. The half-life for deacetylation of Tyr-411 at pH 8.0, 22 °C was 61 ± 4 h. Acetylated lysines formed adducts that were even more stable. In conclusion, the pseudo-esterase activity of albumin is the result of irreversible acetylation of 82 residues and is not the result of turnover.
UR - http://www.scopus.com/inward/record.url?scp=53049095404&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=53049095404&partnerID=8YFLogxK
U2 - 10.1074/jbc.M802555200
DO - 10.1074/jbc.M802555200
M3 - Article
C2 - 18577514
AN - SCOPUS:53049095404
SN - 0021-9258
VL - 283
SP - 22582
EP - 22590
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 33
ER -