Quantum mechanical/molecular mechanical/continuum style solvation model: Linear response theory, variational treatment, and nuclear gradients

Hui Li

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

Linear response and variational treatment are formulated for Hartree-Fock (HF) and Kohn-Sham density functional theory (DFT) methods and combined discrete-continuum solvation models that incorporate self-consistently induced dipoles and charges. Due to the variational treatment, analytic nuclear gradients can be evaluated efficiently for these discrete and continuum solvation models. The forces and torques on the induced point dipoles and point charges can be evaluated using simple electrostatic formulas as for permanent point dipoles and point charges, in accordance with the electrostatic nature of these methods. Implementation and tests using the effective fragment potential (EFP, a polarizable force field) method and the conductorlike polarizable continuum model (CPCM) show that the nuclear gradients are as accurate as those in the gas phase HF and DFT methods. Using B3LYP/EFP/CPCM and time-dependent-B3LYP/EFP/CPCM methods, acetone S0→S1 excitation in aqueous solution is studied. The results are close to those from full B3LYP/CPCM calculations.

Original languageEnglish (US)
Article number184103
JournalJournal of Chemical Physics
Volume131
Issue number18
DOIs
StatePublished - 2009

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Quantum mechanical/molecular mechanical/continuum style solvation model: Linear response theory, variational treatment, and nuclear gradients'. Together they form a unique fingerprint.

Cite this