Quasi-linear cochlear responses to noise can result from instantaneous nonlinearities

Yi Wen Liu, Stephen T. Neely

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Responses to acoustic stimuli in the cochlea are known to be nonlinear. Many existing models of cochlear mechanics were built upon three basic assumptions: traveling-wave amplification is provided by active mechanisms in the outer hair cells (OHCs). Second, as the stimulus level increases, the gain decreases due to saturation nonlinearity in the OHCs. Finally, the saturation non-linearity is "instantaneous"; its input-output relation does not possess memory. These assumptions were recently challenged by reports that basilar-membrane (BM) responses to noise can be predicted well by level-dependent Wiener filters and are thus quasi-linear. It was argued that the quasi-linear responses could not result from instantaneous nonlinearity. In this paper, we present a model of cochlear mechanics which has instantaneous OHC saturation nonlinearity but produces quasi-linear responses to noise. Correlation coefficients were consistently greater than 0.9 between simulated noise responses and the responses predicted by equivalent Wiener filters. Further, Gaussianity in the acoustic stimuli was preserved on the BM. We conclude that the results support the common understandings and assumptions of cochlear mechanics.

Original languageEnglish (US)
Title of host publicationWhat Fire is in Mine Ears
Subtitle of host publicationProgress in Auditory Biomechanics - Proceedings of the 11th International Mechanics of Hearing Workshop
Pages218-223
Number of pages6
DOIs
StatePublished - 2011
Event11th International Mechanics of Hearing Workshop - What Fire is in Mine Ears: Progress in Auditory Biomechanics - Williamstown, MA, United States
Duration: Jul 16 2011Jul 22 2011

Publication series

NameAIP Conference Proceedings
Volume1403
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference11th International Mechanics of Hearing Workshop - What Fire is in Mine Ears: Progress in Auditory Biomechanics
Country/TerritoryUnited States
CityWilliamstown, MA
Period7/16/117/22/11

Keywords

  • EQ-NL theorem
  • Wiener filters
  • saturating nonlinearity

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Quasi-linear cochlear responses to noise can result from instantaneous nonlinearities'. Together they form a unique fingerprint.

Cite this