Queueing theory model of pentose phosphate pathway

Sylwester M. Kloska, Krzysztof Pałczyński, Tomasz Marciniak, Tomasz Talaśka, Marissa Miller, Beata J. Wysocki, Paul Davis, Tadeusz A. Wysocki

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


Due to its role in maintaining the proper functioning of the cell, the pentose phosphate pathway (PPP) is one of the most important metabolic pathways. It is responsible for regulating the concentration of simple sugars and provides precursors for the synthesis of amino acids and nucleotides. In addition, it plays a critical role in maintaining an adequate level of NADPH, which is necessary for the cell to fight oxidative stress. These reasons prompted the authors to develop a computational model, based on queueing theory, capable of simulating changes in PPP metabolites’ concentrations. The model has been validated with empirical data from tumor cells. The obtained results prove the stability and accuracy of the model. By applying queueing theory, this model can be further expanded to include successive metabolic pathways. The use of the model may accelerate research on new drugs, reduce drug costs, and reduce the reliance on laboratory animals necessary for this type of research on which new methods are tested.

Original languageEnglish (US)
Article number4601
JournalScientific reports
Issue number1
StatePublished - Dec 2022
Externally publishedYes

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Queueing theory model of pentose phosphate pathway'. Together they form a unique fingerprint.

Cite this