TY - JOUR
T1 - Reaction of cresyl saligenin phosphate, the organophosphorus agent implicated in aerotoxic syndrome, with human cholinesterases
T2 - Mechanistic studies employing kinetics, mass spectrometry, and X-ray structure analysis
AU - Carletti, Eugénie
AU - Schopfer, Lawrence M.
AU - Colletier, Jacques Philippe
AU - Froment, Marie Thérèse
AU - Nachon, Florian
AU - Weik, Martin
AU - Lockridge, Oksana
AU - Masson, Patrick
PY - 2011/6/20
Y1 - 2011/6/20
N2 - Aerotoxic syndrome is assumed to be caused by exposure to tricresyl phosphate (TCP), an antiwear additive in jet engine lubricants and hydraulic fluid. CBDP (2-(ortho-cresyl)-4H-1,2,3-benzodioxaphosphoran-2-one) is the toxic metabolite of triortho-cresylphosphate, a component of TCP. Human butyrylcholinesterase (BChE; EC 3.1.1.8) and human acetylcholinesterase (AChE; EC 3.1.1.7) are irreversibly inhibited by CBDP. The bimolecular rate constants of inhibition (ki), determined under pseudo-first-order conditions, displayed a biphasic time course of inhibition with ki of 1.6 ×108 M-1 min-1 and 2.7 ×10 7 M-1 min-1 for E and E′ forms of BChE. The inhibition constants for AChE were 1 to 2 orders of magnitude slower than those for BChE. CBDP-phosphorylated cholinesterases are nonreactivatable due to ultra fast aging. Mass spectrometry analysis showed an initial BChE adduct with an added mass of 170 Da from cresylphosphate, followed by dealkylation to a structure with an added mass of 80 Da. Mass spectrometry in 18O-water showed that 18O was incorporated only during the final aging step to form phospho-serine as the final aged BChE adduct. The crystal structure of CBDP-inhibited BChE confirmed that the phosphate adduct is the ultimate aging product. CBDP is the first organophosphorus agent that leads to a fully dealkylated phospho-serine BChE adduct.
AB - Aerotoxic syndrome is assumed to be caused by exposure to tricresyl phosphate (TCP), an antiwear additive in jet engine lubricants and hydraulic fluid. CBDP (2-(ortho-cresyl)-4H-1,2,3-benzodioxaphosphoran-2-one) is the toxic metabolite of triortho-cresylphosphate, a component of TCP. Human butyrylcholinesterase (BChE; EC 3.1.1.8) and human acetylcholinesterase (AChE; EC 3.1.1.7) are irreversibly inhibited by CBDP. The bimolecular rate constants of inhibition (ki), determined under pseudo-first-order conditions, displayed a biphasic time course of inhibition with ki of 1.6 ×108 M-1 min-1 and 2.7 ×10 7 M-1 min-1 for E and E′ forms of BChE. The inhibition constants for AChE were 1 to 2 orders of magnitude slower than those for BChE. CBDP-phosphorylated cholinesterases are nonreactivatable due to ultra fast aging. Mass spectrometry analysis showed an initial BChE adduct with an added mass of 170 Da from cresylphosphate, followed by dealkylation to a structure with an added mass of 80 Da. Mass spectrometry in 18O-water showed that 18O was incorporated only during the final aging step to form phospho-serine as the final aged BChE adduct. The crystal structure of CBDP-inhibited BChE confirmed that the phosphate adduct is the ultimate aging product. CBDP is the first organophosphorus agent that leads to a fully dealkylated phospho-serine BChE adduct.
UR - http://www.scopus.com/inward/record.url?scp=79959401336&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79959401336&partnerID=8YFLogxK
U2 - 10.1021/tx100447k
DO - 10.1021/tx100447k
M3 - Article
C2 - 21438623
AN - SCOPUS:79959401336
SN - 0893-228X
VL - 24
SP - 797
EP - 808
JO - Chemical Research in Toxicology
JF - Chemical Research in Toxicology
IS - 6
ER -