Reactive nitrogen species augment fibroblast-mediated collagen gel contraction, mediator production, and chemotaxis

Hisatoshi Sugiura, Xiangde Liu, Tetsu Kobayashi, Shinsaku Togo, Ronald F. Ertl, Shin Kawasaki, Koichiro Kamio, Xing Qi Wang, Lijun Mao, Lei Shen, Cory M. Hogaboam, Stephen I. Rennard

Research output: Contribution to journalArticle

46 Scopus citations

Abstract

Reactive nitrogen species (RNS) such as peroxynitrite cause cellular injury and tissue inflammation. Excessive production of nitrotyrosine, which is a footprint of RNS, has been observed in the airways of patients with asthma and chronic obstructive pulmonary disease, disorders characterized by tissue remodeling. The aim of this study was to evaluate whether RNS can affect tissue remodeling through direct effects on fibroblasts, and to determine if these effects depend on production of transforming growth factor-β (TGF-β). To accomplish this, human fetal lung fibroblasts (HFL-1) were used to assess fibroblast-mediated contraction of floating gels and chemotaxis toward fibronectin. In addition, the ability of fibroblasts to release TGF-β1, fibronectin, and vascular endothelial growth factor (VECF) was assessed by enzyme-linked immunosorbent assay. Authentic peroxynitrite significantly augmented gel contraction (P < 0.01) and chemotaxis (P < 0.01) compared with control in a concentration-dependent manner. Similarly, the peroxynitrite donor 3-morpholynosidenonimine hydrochloride (SIN-1) also augmented gel contraction (P < 0.01). RNS also significantly increased TGF-β1 (P < 0.01), fibronectin (P < 0.01), and VECF (P < 0.01) release into the media in both 3D gel and monolayer culture. Anti-TGF-β antibody reversed RNS-augmented gel contraction (P < 0.01) and mediator production (P < 0.01). Anti-TGF-β antibody also partially, but significantly, reversed RNS-augmented chemotaxis toward fibronectin (P < 0.01). Finally, peroxynitrite enhanced expression of α5β1, integrin, which is a receptor for fibronectin (P < 0.01), and neutralizing anti-TGF-β antibody suppressed peroxynitrite-augmented α5β1 expression (P < 0.01). These results suggest that RNS can affect the tissue repair process by modulating TGF-β1.

Original languageEnglish (US)
Pages (from-to)592-599
Number of pages8
JournalAmerican journal of respiratory cell and molecular biology
Volume34
Issue number5
DOIs
StatePublished - May 2006

Keywords

  • Chemotaxis
  • Collagen gel contraction
  • Peroxynitrite
  • Tissue repair
  • Transforming growth factor-β

ASJC Scopus subject areas

  • Molecular Biology
  • Pulmonary and Respiratory Medicine
  • Clinical Biochemistry
  • Cell Biology

Fingerprint Dive into the research topics of 'Reactive nitrogen species augment fibroblast-mediated collagen gel contraction, mediator production, and chemotaxis'. Together they form a unique fingerprint.

  • Cite this

    Sugiura, H., Liu, X., Kobayashi, T., Togo, S., Ertl, R. F., Kawasaki, S., Kamio, K., Wang, X. Q., Mao, L., Shen, L., Hogaboam, C. M., & Rennard, S. I. (2006). Reactive nitrogen species augment fibroblast-mediated collagen gel contraction, mediator production, and chemotaxis. American journal of respiratory cell and molecular biology, 34(5), 592-599. https://doi.org/10.1165/rcmb.2005-0339OC