TY - JOUR
T1 - Reclassification of subspecies of Acidovorax avenae as A. Avenae (Manns 1905) emend., A. cattleyae (Pavarino, 1911) comb. nov., A. citrulli Schaad et al., 1978) comb. nov., and proposal of A. oryzae sp. nov.
AU - Schaad, Norman W.
AU - Postnikova, Elena
AU - Sechler, Aaron
AU - Claflin, Larry E.
AU - Vidaver, Anne K.
AU - Jones, Jeffrey B.
AU - Agarkova, Irina
AU - Ignatov, Alexander
AU - Dickstein, Ellen
AU - Ramundo, Bruce A.
PY - 2008/12
Y1 - 2008/12
N2 - The bacterium Acidovorax avenae causes disease in a wide range of economically important monocotyledonous and dicotyledonous plants, including corn, rice, watermelon, anthurium, and orchids. Genotypic and phenotypic relatedness among strains of phytopathogenic A. avenae subsp. avenae, A. avenae subsp. citrulli, A. avenae subsp. cattleyae and A. konjaci, as well as all other Acidovorax species, including A. facilis, the type strain of Acidovorax, was determined. The 16s rDNA sequencing confirmed previous studies showing the environmental species to be very distant from the phytopathogenic species. DNA/DNA reassociation assays on the different strains of A. avenae revealed four (A, B, C, and D) distinct genotypes. Taxon A included six A. avenae subsp. avenae strains from corn that had a mean reciprocal similarity of 81%; taxon B included six A. avenae subsp. avenae strains from rice that had a mean reciprocal similarity of 97%; taxon C contained 11 A. avenae subsp. citrulli strains from cucurbits (cantaloupe, watermelon, and pumpkin) that had a mean reciprocal similarity of 88%, and taxon D contained four A. avenae subsp. cattleyae strains from orchids that had a mean similarity of 98%. The mean reciprocal relatedness between taxa A, B, C, and D was less than 70%. Sequence analysis of 16S rDNA and the 16S-23S rDNA internally transcribed spacer region, as well as AFLP analysis, revealed the same four taxa. All four were easily differentiated phenotypically from each other and from all other recognized Acidovorax species. Strains of A. avenae did not contain 3-hydroxyoctanoic acid, which was found in all other species. On the basis of these and previous genetic and phenotypic results, we propose an emendation of the species A. avenae. A. avenae subsp. citrulli (C strains) and A. avenae subsp. cattleyae (D strains) should be elevated to species rank as A. citrulli and A. cattleyae, respectively. We further propose a new taxon for the B strains, A. oryzae sp. nov. with FC-143T=ICPB 30003T=ICMP 3960T=ATCC 19882T as the type strain.
AB - The bacterium Acidovorax avenae causes disease in a wide range of economically important monocotyledonous and dicotyledonous plants, including corn, rice, watermelon, anthurium, and orchids. Genotypic and phenotypic relatedness among strains of phytopathogenic A. avenae subsp. avenae, A. avenae subsp. citrulli, A. avenae subsp. cattleyae and A. konjaci, as well as all other Acidovorax species, including A. facilis, the type strain of Acidovorax, was determined. The 16s rDNA sequencing confirmed previous studies showing the environmental species to be very distant from the phytopathogenic species. DNA/DNA reassociation assays on the different strains of A. avenae revealed four (A, B, C, and D) distinct genotypes. Taxon A included six A. avenae subsp. avenae strains from corn that had a mean reciprocal similarity of 81%; taxon B included six A. avenae subsp. avenae strains from rice that had a mean reciprocal similarity of 97%; taxon C contained 11 A. avenae subsp. citrulli strains from cucurbits (cantaloupe, watermelon, and pumpkin) that had a mean reciprocal similarity of 88%, and taxon D contained four A. avenae subsp. cattleyae strains from orchids that had a mean similarity of 98%. The mean reciprocal relatedness between taxa A, B, C, and D was less than 70%. Sequence analysis of 16S rDNA and the 16S-23S rDNA internally transcribed spacer region, as well as AFLP analysis, revealed the same four taxa. All four were easily differentiated phenotypically from each other and from all other recognized Acidovorax species. Strains of A. avenae did not contain 3-hydroxyoctanoic acid, which was found in all other species. On the basis of these and previous genetic and phenotypic results, we propose an emendation of the species A. avenae. A. avenae subsp. citrulli (C strains) and A. avenae subsp. cattleyae (D strains) should be elevated to species rank as A. citrulli and A. cattleyae, respectively. We further propose a new taxon for the B strains, A. oryzae sp. nov. with FC-143T=ICPB 30003T=ICMP 3960T=ATCC 19882T as the type strain.
KW - 16S and ITS sequencing
KW - AFLP
KW - Acidovorax
KW - DNA/DNA reassociation
KW - Emendation
KW - Phenotypic tests
KW - Taxonomy
UR - http://www.scopus.com/inward/record.url?scp=56949093867&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=56949093867&partnerID=8YFLogxK
U2 - 10.1016/j.syapm.2008.09.003
DO - 10.1016/j.syapm.2008.09.003
M3 - Article
C2 - 18993005
AN - SCOPUS:56949093867
SN - 0723-2020
VL - 31
SP - 434
EP - 446
JO - Systematic and Applied Microbiology
JF - Systematic and Applied Microbiology
IS - 6-8
ER -