Abstract
Recognizing naturally occurring objects has been a difficult task in computer vision. One of the keys to recognizing objects is the development of a suitable model. One type of model, the fractal, has been used successfully to model complex natural objects. A class of fractals, the L-system, has not only been used to model natural plants, but has also aided in their recognition. This research extends the work in plant recognition using L-systems in two ways. Stochastic L-systems are used to model and generate more realistic plants. Furthermore, to handle the complexity of recognition, a learning system is used that automatically generates a decision tree for classification. Results indicate that the approach used here has great potential as a method for recognition of natural objects.
Original language | English (US) |
---|---|
Article number | 413300 |
Pages (from-to) | 183-187 |
Number of pages | 5 |
Journal | Proceedings - International Conference on Image Processing, ICIP |
Volume | 1 |
DOIs | |
State | Published - 1994 |
Event | The 1994 1st IEEE International Conference on Image Processing - Austin, TX, USA Duration: Nov 13 1994 → Nov 16 1994 |
ASJC Scopus subject areas
- Software
- Computer Vision and Pattern Recognition
- Signal Processing