TY - JOUR
T1 - Recruitment of TLR adapter TRIF to TLR4 signaling complex is mediated by the second helical region of TRIF TIR domain
AU - Piao, Wenji
AU - Ru, Lisa W.
AU - Piepenbrink, Kurt H.
AU - Sundberg, Eric J.
AU - Vogel, Stefanie N.
AU - Toshchakov, Vladimir Y.
PY - 2013/11/19
Y1 - 2013/11/19
N2 - Toll/IL-1R resistance (TIR) domain-containing adapter-inducing IFN-? (TRIF) is a Toll-like receptor (TLR) adapter that mediates MyD88-independent induction of type I interferons through activation of IFN regulatory factor 3 and NF?B. We have examined peptides derived from the TRIF TIR domain for ability to inhibit TLR4. In addition to a previously identified BB loop peptide (TF4), a peptide derived from putative helix B of TRIF TIR (TF5) strongly inhibits LPS-induced cytokine and MAPK activation in wild-Type cells. TF5 failed to inhibit LPS-induced cytokine and kinase activation in TRIF-deficient immortalized bone-marrow-derived macrophage, but was fully inhibitory in MyD88 knockout cells. TF5 does not block macrophage activation induced by TLR2, TLR3, TLR9, or retinoic acid-inducible gene 1/melanoma differentiation-Associated protein 5 agonists. Immunoprecipitation assays demonstrated that TF4 binds to TLR4 but not TRIF-related adaptor molecule (TRAM), whereas TF5 binds to TRAM strongly and TLR4 to a lesser extent. Although TF5 prevented coimmunoprecipitation of TRIF with both TRAM and TLR4, site-directed mutagenesis of the TRIF B helix residues affected TRIF-TRAM coimmunoprecipitation selectively, as these mutations did not block TRIF-TLR4 association. These results suggest that the folded TRIF TIR domain associates with TRAM through the TRIF B helix region, but uses a different region for TRIF-TLR4 association. The B helix peptide TF5, however, can associate with either TRAM or TLR4. In a mouse model of TLR4-driven inflammation, TF5 decreased plasma cytokine levels and protected mice from a lethal LPS challenge. Our data identify TRIF sites that are important for interaction with TLR4 and TRAM, and demonstrate that TF5 is a potent TLR4 inhibitor with significant potential as a candidate therapeutic for human sepsis.
AB - Toll/IL-1R resistance (TIR) domain-containing adapter-inducing IFN-? (TRIF) is a Toll-like receptor (TLR) adapter that mediates MyD88-independent induction of type I interferons through activation of IFN regulatory factor 3 and NF?B. We have examined peptides derived from the TRIF TIR domain for ability to inhibit TLR4. In addition to a previously identified BB loop peptide (TF4), a peptide derived from putative helix B of TRIF TIR (TF5) strongly inhibits LPS-induced cytokine and MAPK activation in wild-Type cells. TF5 failed to inhibit LPS-induced cytokine and kinase activation in TRIF-deficient immortalized bone-marrow-derived macrophage, but was fully inhibitory in MyD88 knockout cells. TF5 does not block macrophage activation induced by TLR2, TLR3, TLR9, or retinoic acid-inducible gene 1/melanoma differentiation-Associated protein 5 agonists. Immunoprecipitation assays demonstrated that TF4 binds to TLR4 but not TRIF-related adaptor molecule (TRAM), whereas TF5 binds to TRAM strongly and TLR4 to a lesser extent. Although TF5 prevented coimmunoprecipitation of TRIF with both TRAM and TLR4, site-directed mutagenesis of the TRIF B helix residues affected TRIF-TRAM coimmunoprecipitation selectively, as these mutations did not block TRIF-TLR4 association. These results suggest that the folded TRIF TIR domain associates with TRAM through the TRIF B helix region, but uses a different region for TRIF-TLR4 association. The B helix peptide TF5, however, can associate with either TRAM or TLR4. In a mouse model of TLR4-driven inflammation, TF5 decreased plasma cytokine levels and protected mice from a lethal LPS challenge. Our data identify TRIF sites that are important for interaction with TLR4 and TRAM, and demonstrate that TF5 is a potent TLR4 inhibitor with significant potential as a candidate therapeutic for human sepsis.
UR - http://www.scopus.com/inward/record.url?scp=84888086101&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84888086101&partnerID=8YFLogxK
U2 - 10.1073/pnas.1313575110
DO - 10.1073/pnas.1313575110
M3 - Article
C2 - 24194546
AN - SCOPUS:84888086101
SN - 0027-8424
VL - 110
SP - 19036
EP - 19041
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 47
ER -