Regulation of ocular angiogenesis by notch signaling: Implications in neovascular age-related macular degeneration

Iqbal Ahmad, Sudha Balasubramanian, Carolina B. del Debbio, Sowmya Parameswaran, Allen R. Katz, Carol Toris, Robert N. Fariss

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

PURPOSE. Wet age-related macular degeneration (AMD), which accounts for most AMD-related vision loss, is characterized by choroidal neovascularization (CNV). The underlying mechanism of CNV is poorly understood, but evidence indicates pathologic recruitment of normal angiogenic signaling pathways such as the VEGF pathway. Recent evidence suggests that the VEGF pathway regulates angiogenesis in concert with Notch signaling. Here, the authors examined the role of Notch signaling in CNV in the backdrop of Notch signaling-mediated regulation of retinal angiogenesis. METHODS. Choroid sclera complexes, after laser-induced CNV, were examined for changes in CNV lesion volume and in proangiogenic and antiangiogenic gene expression after perturbation in Notch signaling. Retinal vessels and angiogenic gene expression in retinal endothelial cells were analyzed in postnatal rats after perturbations in Notch signaling. Notch signaling was activated and inhibited by intravitreal or systemic injection of Jagged1 peptide and gamma secretase inhibitor DAPT, respectively. RESULTS. The authors demonstrated that activation of the canonical Notch pathway reduced the volume of CNV lesions as it attenuated the development of postnatal retinal vasculature. In contrast, inhibition of the Notch pathway exacerbated CNV lesions as it led to the development of hyperdense retinal vasculature. The authors also identified genes associated with proangiogenesis (Vegfr2, Ccr3, and Pdgfb) and antiangiogenesis (Vegfr1 and Unc5b) as targets of Notch signaling-mediated vascular homeostasis, the disruption of which might underlie CNV. CONCLUSIONS. This study suggests that Notch signaling is a key regulator of CNV and thus a molecular target for therapeutic intervention in wet AMD.

Original languageEnglish (US)
Pages (from-to)2868-2878
Number of pages11
JournalInvestigative Ophthalmology and Visual Science
Volume52
Issue number6
DOIs
StatePublished - May 2011

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience

Fingerprint Dive into the research topics of 'Regulation of ocular angiogenesis by notch signaling: Implications in neovascular age-related macular degeneration'. Together they form a unique fingerprint.

Cite this