Abstract
Senescence is an irreversible cell-cycle arrest that is elicited by a wide range of factors, including replicative exhaustion. Emerging evidences suggest that cellular senescence contributes to ageing and acts as a tumour suppressor mechanism. To identify novel genes regulating senescence, we performed a loss-of-function screen on normal human diploid fibroblasts. We show that downregulation of the AMPK-related protein kinase 5 (ARK5 or NUAK1) results in extension of the cellular replicative lifespan. Interestingly, the levels of NUAK1 are upregulated during senescence whereas its ectopic expression triggers a premature senescence. Cells that constitutively express NUAK1 suffer gross aneuploidies and show diminished expression of the genomic stability regulator LATS1, whereas depletion of NUAK1 with shRNA exerts opposite effects. Interestingly, a dominant-negative form of LATS1 phenocopies NUAK1 effects. Moreover, we show that NUAK1 phosphorylates LATS1 at S464 and this has a role in controlling its stability. In summary, our work highlights a novel role for NUAK1 in the control of cellular senescence and cellular ploidy.
Original language | English (US) |
---|---|
Pages (from-to) | 376-386 |
Number of pages | 11 |
Journal | EMBO Journal |
Volume | 29 |
Issue number | 2 |
DOIs | |
State | Published - Jan 2010 |
Keywords
- LATS1
- NUAK1
- Senescence
ASJC Scopus subject areas
- Neuroscience(all)
- Molecular Biology
- Biochemistry, Genetics and Molecular Biology(all)
- Immunology and Microbiology(all)