TY - JOUR
T1 - Relative Contributions of Intracranial Pressure and Intraocular Pressure on Lamina Cribrosa Behavior
AU - Tong, Junfei
AU - Ghate, Deepta
AU - Kedar, Sachin
AU - Gu, Linxia
N1 - Funding Information:
-e authors gratefully acknowledge the pilot grant from unrestricted award from Research to Prevent Blindness to the Truhlsen Eye Institute and the National Institute of General Medical Sciences.
Publisher Copyright:
© 2019 Junfei Tong et al.
PY - 2019
Y1 - 2019
N2 - Purpose. To characterize the relative contributions of intraocular pressure (IOP) and intracranial pressure (ICP) on lamina cribrosa (LC) behavior, specifically LC depth (LCD) and LC peak strain. Methods. An axially symmetric finite element model of the posterior eye was constructed with an elongated optic nerve and retro-orbital subarachnoid space ensheathed by pia and dura mater. The mechanical environment in LC was evaluated with ICP ranging from 5 to 15 mmHg and IOP from 10 to 45 mmHg. LCD and LC peak strains at various ICP and IOP levels were estimated using full factorial experiments. Multiple linear regression analyses were then applied to estimate LCD and LC peak strain using ICP and IOP as independent variables. Results. Both increased ICP and decreased IOP led to a smaller LCD and LC peak strain. The regression correlation coefficient for LCD was -1.047 for ICP and 1.049 for IOP, and the ratio of the two regression coefficients was -1.0. The regression correlation coefficient for LC peak strain was -0.025 for ICP and 0.106 for IOP, and the ratio of the two regression coefficients was -0.24. A stiffer sclera increased LCD but decreased LC peak strain; besides, it increased the relative contribution of ICP on the LCD but decreased that on the LC peak strain. Conclusions. ICP and IOP have opposing effects on LCD and LC peak strain. While their effects on LCD are equivalent, the effect of IOP on LC peak strain is 3 times larger than that of ICP. The influences of these pressure are dependent on sclera material properties, which might explain the pathogenesis of ocular hypertension and normal-tension glaucoma.
AB - Purpose. To characterize the relative contributions of intraocular pressure (IOP) and intracranial pressure (ICP) on lamina cribrosa (LC) behavior, specifically LC depth (LCD) and LC peak strain. Methods. An axially symmetric finite element model of the posterior eye was constructed with an elongated optic nerve and retro-orbital subarachnoid space ensheathed by pia and dura mater. The mechanical environment in LC was evaluated with ICP ranging from 5 to 15 mmHg and IOP from 10 to 45 mmHg. LCD and LC peak strains at various ICP and IOP levels were estimated using full factorial experiments. Multiple linear regression analyses were then applied to estimate LCD and LC peak strain using ICP and IOP as independent variables. Results. Both increased ICP and decreased IOP led to a smaller LCD and LC peak strain. The regression correlation coefficient for LCD was -1.047 for ICP and 1.049 for IOP, and the ratio of the two regression coefficients was -1.0. The regression correlation coefficient for LC peak strain was -0.025 for ICP and 0.106 for IOP, and the ratio of the two regression coefficients was -0.24. A stiffer sclera increased LCD but decreased LC peak strain; besides, it increased the relative contribution of ICP on the LCD but decreased that on the LC peak strain. Conclusions. ICP and IOP have opposing effects on LCD and LC peak strain. While their effects on LCD are equivalent, the effect of IOP on LC peak strain is 3 times larger than that of ICP. The influences of these pressure are dependent on sclera material properties, which might explain the pathogenesis of ocular hypertension and normal-tension glaucoma.
UR - http://www.scopus.com/inward/record.url?scp=85064014907&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85064014907&partnerID=8YFLogxK
U2 - 10.1155/2019/3064949
DO - 10.1155/2019/3064949
M3 - Article
C2 - 31007950
AN - SCOPUS:85064014907
SN - 2090-004X
VL - 2019
JO - Journal of Ophthalmology
JF - Journal of Ophthalmology
M1 - 3064949
ER -