TY - JOUR
T1 - Response of Amaranthus spp. Following exposure to sublethal herbicide rates via spray particle drift
AU - Vieira, Bruno C.
AU - Luck, Joe D.
AU - Amundsen, Keenan L.
AU - Gaines, Todd A.
AU - Werle, Rodrigo
AU - Kruger, Greg R.
N1 - Funding Information:
The authors would like to thank CAPES (Brazilian Government Foundation) for the financial support to the graduate student BCV (proc 013041/ 2013-04). This project was partially supported by the Nebraska Agricultural Experiment Station with funding from the Hatch Multistate Research capacity funding program from the USDA National Institute of Food and Agriculture. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors would like to thank all undergraduate students, graduate students, and professional staff at the University of Nebraska-Lincoln who assisted with data collection and analysis.
Publisher Copyright:
© 2019 Vieira et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2019/7/1
Y1 - 2019/7/1
N2 - The adverse consequences of herbicide drift towards sensitive crops have been extensively reported in the literature. However, little to no information is available on the consequences of herbicide drift onto weed species inhabiting boundaries of agricultural fields. Exposure to herbicide drift could be detrimental to long-term weed management as several weed species have evolved herbicide-resistance after recurrent selection with sublethal herbicide rates This study investigated the deposition of glyphosate, 2,4-D, and dicamba spray particle drift from applications with two different nozzles in a low speed wind tunnel, and their impact on growth and development of Amaranthus spp. Herbicide drift resulted in biomass reduction or complete plant mortality. Inflection points (distance to 50% biomass reduction) for Amaranthus tuberculatus were 7.7, 4.0, and 4.1 m downwind distance for glyphosate, 2,4-D, and dicamba applications with the flat-fan nozzle, respectively, whereas these values corresponded to 2.8, 2.5, and 1.9 m for applications with the air-inclusion nozzle. Inflection points for Amaranthus palmeri biomass reduction were 16.3, 10.9, and 11.5 m for glyphosate, 2,4-D, and dicamba applications with the flat-fan nozzle, respectively, whereas these values corresponded to 7.6, 5.4, and 5.4 m for applications with the air-inclusion nozzle. Plants were more sensitive to glyphosate at higher exposure rates than other herbicides, whereas plants were more sensitive to 2,4-D and dicamba at lower exposure rates compared to glyphosate. Applications with the flat-fan nozzle resulted in 32.3 and 11.5% drift of the applied rate at 1.0 and 3.0 m downwind, respectively, whereas the air-inclusion nozzle decreased the dose exposure in the same distances (11.4 and 2.7%, respectively). Herbicide drift towards field boundaries was influenced by nozzle design and exposed weeds to herbicide rates previously reported to select for herbicide-resistant biotypes.
AB - The adverse consequences of herbicide drift towards sensitive crops have been extensively reported in the literature. However, little to no information is available on the consequences of herbicide drift onto weed species inhabiting boundaries of agricultural fields. Exposure to herbicide drift could be detrimental to long-term weed management as several weed species have evolved herbicide-resistance after recurrent selection with sublethal herbicide rates This study investigated the deposition of glyphosate, 2,4-D, and dicamba spray particle drift from applications with two different nozzles in a low speed wind tunnel, and their impact on growth and development of Amaranthus spp. Herbicide drift resulted in biomass reduction or complete plant mortality. Inflection points (distance to 50% biomass reduction) for Amaranthus tuberculatus were 7.7, 4.0, and 4.1 m downwind distance for glyphosate, 2,4-D, and dicamba applications with the flat-fan nozzle, respectively, whereas these values corresponded to 2.8, 2.5, and 1.9 m for applications with the air-inclusion nozzle. Inflection points for Amaranthus palmeri biomass reduction were 16.3, 10.9, and 11.5 m for glyphosate, 2,4-D, and dicamba applications with the flat-fan nozzle, respectively, whereas these values corresponded to 7.6, 5.4, and 5.4 m for applications with the air-inclusion nozzle. Plants were more sensitive to glyphosate at higher exposure rates than other herbicides, whereas plants were more sensitive to 2,4-D and dicamba at lower exposure rates compared to glyphosate. Applications with the flat-fan nozzle resulted in 32.3 and 11.5% drift of the applied rate at 1.0 and 3.0 m downwind, respectively, whereas the air-inclusion nozzle decreased the dose exposure in the same distances (11.4 and 2.7%, respectively). Herbicide drift towards field boundaries was influenced by nozzle design and exposed weeds to herbicide rates previously reported to select for herbicide-resistant biotypes.
UR - http://www.scopus.com/inward/record.url?scp=85069657636&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85069657636&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0220014
DO - 10.1371/journal.pone.0220014
M3 - Article
C2 - 31318947
AN - SCOPUS:85069657636
SN - 1932-6203
VL - 14
JO - PloS one
JF - PloS one
IS - 7
M1 - e0220014
ER -