Revealing the atomic and electronic mechanism of human manganese superoxide dismutase product inhibition

Jahaun Azadmanesh, Katelyn Slobodnik, Lucas R. Struble, William E. Lutz, Leighton Coates, Kevin L. Weiss, Dean A.A. Myles, Thomas Kroll, Gloria E.O. Borgstahl

Research output: Contribution to journalArticlepeer-review

Abstract

Human manganese superoxide dismutase (MnSOD) is a crucial oxidoreductase that maintains the vitality of mitochondria by converting superoxide (O2●−) to molecular oxygen (O2) and hydrogen peroxide (H2O2) with proton-coupled electron transfers (PCETs). Human MnSOD has evolved to be highly product inhibited to limit the formation of H2O2, a freely diffusible oxidant and signaling molecule. The product-inhibited complex is thought to be composed of a peroxide (O22−) or hydroperoxide (HO2) species bound to Mn ion and formed from an unknown PCET mechanism. PCET mechanisms of proteins are typically not known due to difficulties in detecting the protonation states of specific residues that coincide with the electronic state of the redox center. To shed light on the mechanism, we combine neutron diffraction and X-ray absorption spectroscopy of the product-bound, trivalent, and divalent states of the enzyme to reveal the positions of all the atoms, including hydrogen, and the electronic configuration of the metal ion. The data identifies the product-inhibited complex, and a PCET mechanism of inhibition is constructed.

Original languageEnglish (US)
Article number5973
JournalNature communications
Volume15
Issue number1
DOIs
StatePublished - Dec 2024

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Revealing the atomic and electronic mechanism of human manganese superoxide dismutase product inhibition'. Together they form a unique fingerprint.

Cite this