Abstract
The aim of this study was to explore the precise role of retinoic acid-inducible gene-I (RIG-I) signaling in human immunodeficiency virus type 1 (HIV-1)-infected macrophages from patients with HIV-1-associated neurocognitive disorders (HAND). Postmortem brain tissues were collected from patients with HIV-1-associated dementia and were compared to samples collected from HIV serum-positive patients without dementia and HIV serum-negative patients. A human monocyte-derived macrophage (MDM) primary culture system was established to evaluate the expression of RIG-I in these samples. Knockdown of RIG-I pathways genes was employed and STAT1 expression and phosphorylation levels were examined to explore the molecular mechanisms of HAND. The expression of RIG-I in postmortem brain tissue from HAND patients was significantly higher than in patients who were HIV serum-positive without dementia or HIV serum-negative. Moreover, we demonstrated that HIV-1 infection could result in a significant increase in the level of RIG-I in human MDMs. Moreover, a correlation was found between the increase in RIG-I expression and STAT1 expression and phosphorylation. Accordingly, knockdown of RIG-I decreased the phosphorylation of STAT1 and downregulated interferon-related genes. These observations highlight the importance of RIG-I signaling in anti-HIV innate immunity in macrophages, which may be beneficial for the treatment of HIV and aid in the understanding of the neuropathogenesis of HAND.
Original language | English (US) |
---|---|
Pages (from-to) | 13799-13811 |
Number of pages | 13 |
Journal | Genetics and Molecular Research |
Volume | 14 |
Issue number | 4 |
DOIs | |
State | Published - Oct 28 2015 |
Keywords
- HIV-1 associated neurocognitive disorders
- Human immunodeficiency virus type I
- Monocyte-derived macrophage
- Retinoic acid-inducible gene-I
ASJC Scopus subject areas
- Molecular Biology
- Genetics