RNase L and double-stranded RNA-dependent protein kinase exert complementary roles in islet cell defense during coxsackievirus infection

Malin Flodström-Tullberg, Monica Hultcrantz, Alexandr Stotland, Amy Maday, Devin Tsai, Cody Fine, Bryan Williams, Robert Silverman, Nora Sarvetnick

Research output: Contribution to journalArticlepeer-review

79 Scopus citations

Abstract

Coxsackievirus (CV) is an important human pathogen that has been linked to the development of autoimmunity. An intact pancreatic β cell IFN response is critical for islet cell survival and protection from type 1 diabetes following CV infection. In this study, we show that IFNs trigger an antiviral state in β cells by inducing the expression of proteins involved in intracellular antiviral defense. Specifically, we demonstrate that 2′,5′-oligoadenylate synthetases (2-5AS), RNase L, and dsRNA-dependent protein kinase (PKR) are expressed by pancreatic islet cells and that IFNs (IFN-α and IFN-γ) increase the expression of 2-5AS and PKR, but not RNase L. Moreover, our in vitro studies uncovered that these pathways play important roles in providing unique and complementary antiviral activities that critically regulate the outcome of CV infection. The 2-5AS/RNase L pathway was critical for IFN-α-mediated islet cell resistance from CV serotype B4 (CVB4) infection and replication, whereas an intact PKR pathway was required for efficient IFN-γ-mediated repression of CVB4 infection and replication. Finally, we show that the 2-5AS/RNase L and the PKR pathways play important roles for host survival during a challenge with CVB4. In conclusion, this study has dissected the pathways used by distinct antiviral signals and linked their expression to defense against CVB4.

Original languageEnglish (US)
Pages (from-to)1171-1177
Number of pages7
JournalJournal of Immunology
Volume174
Issue number3
DOIs
StatePublished - Feb 1 2005

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology

Fingerprint Dive into the research topics of 'RNase L and double-stranded RNA-dependent protein kinase exert complementary roles in islet cell defense during coxsackievirus infection'. Together they form a unique fingerprint.

Cite this