TY - JOUR
T1 - RNase L and double-stranded RNA-dependent protein kinase exert complementary roles in islet cell defense during coxsackievirus infection
AU - Flodström-Tullberg, Malin
AU - Hultcrantz, Monica
AU - Stotland, Alexandr
AU - Maday, Amy
AU - Tsai, Devin
AU - Fine, Cody
AU - Williams, Bryan
AU - Silverman, Robert
AU - Sarvetnick, Nora
PY - 2005/2/1
Y1 - 2005/2/1
N2 - Coxsackievirus (CV) is an important human pathogen that has been linked to the development of autoimmunity. An intact pancreatic β cell IFN response is critical for islet cell survival and protection from type 1 diabetes following CV infection. In this study, we show that IFNs trigger an antiviral state in β cells by inducing the expression of proteins involved in intracellular antiviral defense. Specifically, we demonstrate that 2′,5′-oligoadenylate synthetases (2-5AS), RNase L, and dsRNA-dependent protein kinase (PKR) are expressed by pancreatic islet cells and that IFNs (IFN-α and IFN-γ) increase the expression of 2-5AS and PKR, but not RNase L. Moreover, our in vitro studies uncovered that these pathways play important roles in providing unique and complementary antiviral activities that critically regulate the outcome of CV infection. The 2-5AS/RNase L pathway was critical for IFN-α-mediated islet cell resistance from CV serotype B4 (CVB4) infection and replication, whereas an intact PKR pathway was required for efficient IFN-γ-mediated repression of CVB4 infection and replication. Finally, we show that the 2-5AS/RNase L and the PKR pathways play important roles for host survival during a challenge with CVB4. In conclusion, this study has dissected the pathways used by distinct antiviral signals and linked their expression to defense against CVB4.
AB - Coxsackievirus (CV) is an important human pathogen that has been linked to the development of autoimmunity. An intact pancreatic β cell IFN response is critical for islet cell survival and protection from type 1 diabetes following CV infection. In this study, we show that IFNs trigger an antiviral state in β cells by inducing the expression of proteins involved in intracellular antiviral defense. Specifically, we demonstrate that 2′,5′-oligoadenylate synthetases (2-5AS), RNase L, and dsRNA-dependent protein kinase (PKR) are expressed by pancreatic islet cells and that IFNs (IFN-α and IFN-γ) increase the expression of 2-5AS and PKR, but not RNase L. Moreover, our in vitro studies uncovered that these pathways play important roles in providing unique and complementary antiviral activities that critically regulate the outcome of CV infection. The 2-5AS/RNase L pathway was critical for IFN-α-mediated islet cell resistance from CV serotype B4 (CVB4) infection and replication, whereas an intact PKR pathway was required for efficient IFN-γ-mediated repression of CVB4 infection and replication. Finally, we show that the 2-5AS/RNase L and the PKR pathways play important roles for host survival during a challenge with CVB4. In conclusion, this study has dissected the pathways used by distinct antiviral signals and linked their expression to defense against CVB4.
UR - http://www.scopus.com/inward/record.url?scp=12444252033&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=12444252033&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.174.3.1171
DO - 10.4049/jimmunol.174.3.1171
M3 - Article
C2 - 15661870
AN - SCOPUS:12444252033
SN - 0022-1767
VL - 174
SP - 1171
EP - 1177
JO - Journal of Immunology
JF - Journal of Immunology
IS - 3
ER -