Robotic natural orifice translumenal endoscopic surgery

Amy C. Lehman, Nathan A. Wood, Jason Dumpert, Dmitry Oleynikov, Shane M. Farritor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

19 Scopus citations

Abstract

Gaining access to the peritoneal cavity through a natural orifice is potentially the next paradigm shift in minimally invasive surgery. Natural Orifice Translumenal Endoscopic Surgery (NOTES) provides distinct patient advantages, but is surgically challenging. Access to the peritoneal cavity is limited by the size and complex geometry of the natural lumen, and existing tools do not adequately address these constraints. A miniature in vivo robot with two "arms" and a central "body" has been developed for NOTES. The robot can be advanced through the esophagus and into the peritoneal cavity using an overtube and endoscope. Once completely inserted, the robot provides a stable platform for visualization and dexterous manipulation from arbitrary orientations. In vivo testing of the NOTES robot in a porcine model has been successful. Using the robot, the surgeon was able to explore the abdominal cavity and perform small bowel dissection. In addition, benchtop testing has demonstrated the ability of the robot arm to follow a predetermined path in Cartesian space and shows good results towards future three-dimensional feedback control.

Original languageEnglish (US)
Title of host publication2008 IEEE International Conference on Robotics and Automation, ICRA 2008
Pages2969-2974
Number of pages6
DOIs
StatePublished - 2008
Event2008 IEEE International Conference on Robotics and Automation, ICRA 2008 - Pasadena, CA, United States
Duration: May 19 2008May 23 2008

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2008 IEEE International Conference on Robotics and Automation, ICRA 2008
Country/TerritoryUnited States
CityPasadena, CA
Period5/19/085/23/08

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Robotic natural orifice translumenal endoscopic surgery'. Together they form a unique fingerprint.

Cite this