TY - JOUR
T1 - Role of sulfhydryl groups in Y2 neuropeptide Y receptor binding activity
AU - Li, W.
AU - MacDonald, R. G.
AU - Hexum, T. D.
N1 - Copyright:
Copyright 2004 Elsevier B.V., All rights reserved.
PY - 1992/4/15
Y1 - 1992/4/15
N2 - Benextramine, a tetramine disulfide, irreversibly inhibits neuropeptide Y (NPY) binding to the 50-kDa Y2 NPY receptor in bovine hippocampus (Li, W., MacDonald, R. G., and Hexum, T. D. (1991) Eur. J. Pharmacol. 207, 89-91). Evidence is presented that this inhibition occurs through a thiol-disulfide exchange. Treatment of bovine hippocampal membranes with benextramine inhibited NPY affinity cross-linking to the 50-kDa receptor. This inhibition of labeling was not affected by washing the membranes, but could be completely reversed by the addition of several thiol reducing reagents, including reduced glutathione, β-mercaptoethanol, and cysteine. Benextramine inhibited 70% of NPY-specific labeling and was much more effective than other sulfhydryl reactive agents, such as oxidized glutathione, cystamine, and 5,5′-dithio-bis(2-nitrobenzoic acid). Furthermore, the sulfhydryl-modifying agents N-ethylmaleimide and p-chloromercuriphenyl-sulfonic acid specifically decreased NPY affinity labeling. Finally, NPY labeling of the 50-kDa receptor was reduced by the heavy metal ions Zn2+, Cu2+, and Hg2+. Preincubation with NPY prevented Y2 receptors from being inactivated by either 400 μM N-ethylmaleimide or 1 mM benextramine. These results suggest that one or more benextramine-sensitive sulfhydryl groups on the Y2 receptor are important for NPY binding activity.
AB - Benextramine, a tetramine disulfide, irreversibly inhibits neuropeptide Y (NPY) binding to the 50-kDa Y2 NPY receptor in bovine hippocampus (Li, W., MacDonald, R. G., and Hexum, T. D. (1991) Eur. J. Pharmacol. 207, 89-91). Evidence is presented that this inhibition occurs through a thiol-disulfide exchange. Treatment of bovine hippocampal membranes with benextramine inhibited NPY affinity cross-linking to the 50-kDa receptor. This inhibition of labeling was not affected by washing the membranes, but could be completely reversed by the addition of several thiol reducing reagents, including reduced glutathione, β-mercaptoethanol, and cysteine. Benextramine inhibited 70% of NPY-specific labeling and was much more effective than other sulfhydryl reactive agents, such as oxidized glutathione, cystamine, and 5,5′-dithio-bis(2-nitrobenzoic acid). Furthermore, the sulfhydryl-modifying agents N-ethylmaleimide and p-chloromercuriphenyl-sulfonic acid specifically decreased NPY affinity labeling. Finally, NPY labeling of the 50-kDa receptor was reduced by the heavy metal ions Zn2+, Cu2+, and Hg2+. Preincubation with NPY prevented Y2 receptors from being inactivated by either 400 μM N-ethylmaleimide or 1 mM benextramine. These results suggest that one or more benextramine-sensitive sulfhydryl groups on the Y2 receptor are important for NPY binding activity.
UR - http://www.scopus.com/inward/record.url?scp=0026688013&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026688013&partnerID=8YFLogxK
M3 - Article
C2 - 1348506
AN - SCOPUS:0026688013
SN - 0021-9258
VL - 267
SP - 7570
EP - 7575
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 11
ER -