S-adenosylmethionine prevents chronic alcohol-induced mitochondrial dysfunction in the rat liver

Shannon M. Bailey, Gloria Robinson, Anita Pinner, Laura Chamlee, Elena Ulasova, Melissa Pompilius, Grier P. Page, David Chhieng, Nirag Jhala, Aimee Landar, Kusum K. Kharbanda, Scott Ballinger, Victor Darley-Usmar

Research output: Contribution to journalArticlepeer-review

99 Scopus citations


An early event that occurs in response to alcohol consumption is mitochondrial dysfunction, which is evident in changes to the mitochondrial proteome, respiration defects, and mitochondrial DNA (mtDNA) damage. S-adenosylmethionine (SAM) has emerged as a potential therapeutic for treating alcoholic liver disease through mechanisms that appear to involve decreases in oxidative stress and proinflammatory cytokine production as well as the alleviation of steatosis. Because mitochondria are a source of reactive oxygen/nitrogen species and a target for oxidative damage, we tested the hypothesis that SAM treatment during alcohol exposure preserves organelle function. Mitochondria were isolated from livers of rats fed control and ethanol diets with and without SAM for 5 wk. Alcohol feeding caused a significant decrease in state 3 respiration and the respiratory control ratio, whereas SAM administration prevented these alcohol-mediated defects and preserved hepatic SAM levels. SAM treatment prevented alcohol-associated increases in mitochondrial superoxide production, mtDNA damage, and inducible nitric oxide synthase induction, without a significant lessening of steatosis. Accompanying these indexes of oxidant damage, SAM prevented alcohol-mediated losses in cytochrome c oxidase subunits as shown using blue native PAGE proteomics and immunoblot analysis, which resulted in partial preservation of complex IV activity. SAM treatment attenuated the upregulation of the mitochondrial stress chaperone prohibitin. Although SAM supplementation did not alleviate steatosis by itself, SAM prevented several key alcohol-mediated defects to the mitochondria genome and proteome that contribute to the bioenergetic defect in the liver after alcohol consumption. These findings reveal new molecular targets through which SAM may work to alleviate one critical component of alcohol-induced liver injury: mitochondria dysfunction.

Original languageEnglish (US)
Pages (from-to)G857-G867
JournalAmerican Journal of Physiology - Gastrointestinal and Liver Physiology
Issue number5
StatePublished - Nov 2006
Externally publishedYes


  • Blue native gel electrophoresis
  • Cytochrome c oxidase
  • Mitochondrial DNA
  • Oxidative stress
  • Prohibitin
  • Proteome

ASJC Scopus subject areas

  • Physiology
  • Hepatology
  • Gastroenterology
  • Physiology (medical)


Dive into the research topics of 'S-adenosylmethionine prevents chronic alcohol-induced mitochondrial dysfunction in the rat liver'. Together they form a unique fingerprint.

Cite this