@inproceedings{5d55cb990e484ccab645343df1245a80,
title = "SARM - Succinct association rule mining: An approach to enhance association mining",
abstract = "The performance of association rule mining in terms of computation time and number of redundant rules generated deteriorates as the size of database increases and/or support threshold used is smaller. In this paper, we present a new approach called SARM - succinct association rule mining, to enhance the association mining. Our approach is based on our understanding of the mining process that items become less useful as mining proceeds, and that such items can be eliminated to accelerate the mining and to reduce the number of redundant rules generated. We propose a new paradigm that an item becomes less useful when the most interesting rules involving the item have been discovered and deleting it from the mining process will not result in any significant loss of information. SARM generates a compact set of rules called succinct association rule (SAR) set that is largely free of redundant rules. SARM is efficient in association mining, especially when support threshold used is small. Experiments are conducted on both synthetic and real-life databases. SARM approach is especially suitable for applications where rules with small support may be of significant interest. We show that for such applications SAR set can be mined efficiently.",
author = "Jitender Deogun and Liying Jiang",
year = "2005",
doi = "10.1007/11425274_13",
language = "English (US)",
isbn = "3540258787",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
pages = "121--130",
booktitle = "Foundations of Intelligent Systems - 15th International Symposium, ISMIS 2005, Proceedings",
note = "15th International Symposium on Methodologies for Intelligent Systems, ISMIS 2005 ; Conference date: 25-05-2005 Through 28-05-2005",
}