Scheduling many-body short range MD simulations on a cluster of workstations and custom VLSI hardware

J. V. Sumanth, David R. Swanson, Hong Jiang

Research output: Contribution to journalArticle

3 Scopus citations

Abstract

Molecular dynamics is a powerful technique used to obtain static or dynamic properties of liquids and solids. The sheer computational intensity of many of these simulations demands more computational power than what any uniprocessor system can provide. Fortunately, these simulations can be parallelized, allowing faster execution times on a cluster of workstations. Of late, custom VLSI chips have been designed to provide an alternative to parallel techniques. The MD-GRAPE 2 is one such solution, offering a peak performance of 64 Gflops. We evaluate the performance and cost-effectiveness of various methods used in sequential and parallel molecular dynamics and the MD-GRAPE 2. We then illustrate how MD simulations involving more complex potential functions can be scheduled on parallel machines and the MD-GRAPE 2 simultaneously.

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint Dive into the research topics of 'Scheduling many-body short range MD simulations on a cluster of workstations and custom VLSI hardware'. Together they form a unique fingerprint.

  • Cite this