TY - JOUR
T1 - Secretion of insulin-like growth factor II (IGF-II) and IGF-binding protein-2 by intestinal epithelial (IEC-6) cells
T2 - Implications for autocrine growth regulation
AU - Park, Jung H.Y.
AU - McCusker, Robert H.
AU - Vanderhoof, Jon A.
AU - Mohammadpour, Hamid
AU - Harty, Richard F.
AU - Macdonald, Richard G.
PY - 1992/9
Y1 - 1992/9
N2 - To identify the factors regulating the proliferation of intestinal epithelium, we examined the effects of various growth factors on [3H] thymidine incorporation into the DNA of IEC-6 cells, an intestinal epithelial cell line derived from rat jejunal crypts. Insulin-like growth factor-I (IGF-I), IGF-II, and insulin stimulated the DNA and protein synthesis of IEC-6 cells in serum-free medium supplemented with transferrin, dexamethasone, and BSA (basal medium). Concentration-response experiments demonstrated that IGF-I is approximately 10 times more potent than IGF-II or insulin in producing 2- to 3-fold stimulations of DNA and protein synthesis by IEC-6 cells. In addition, IEC-6 cells proliferated slowly in the basal medium without any added growth factors. Analysis of medium conditioned by IEC-6 cells by gel filtration chromatography, RIA, HPLC, and N-terminal sequencing revealed that IEC-6 cells synthesize and secrete mature, 7,500 mo wt (Mr) IGF-II as well as high Mr forms of IGF-II. In addition, ligand blot, immunoblot, and N-terminal sequence analyses showed that IEC-6 cells produce the 34,000 Mr IGF-binding protein-2 (IGFBP-2). To determine if IGFBP-2 modulates IGF responses in IEC-6 cells, the IGF-I analogs, Des-(1-3)-IGF-I and [GIn3,Ala4,Tyr15,Leu16]IGF-I, both of which have a reduced affinity for IGFBPs, were tested for their effects on IEC-6 cell proliferation. Both analogs exhibited 10-fold greater potency than IGF-I, presumably because endogenously secreted IGFBPs depress IGF-I binding to cell surface receptors. Finally, purified IGFBP-2 attenuated the DNA synthesis of IEC-6 cells in a dose-dependent manner. We conclude that IGFBP-2 secreted by intestinal epithelial cells is capable of limiting the mitogenic activity of both exogenous and endogenous IGFs by blocking the association of the growth factors with cell surface binding sites. These results further suggest that the growth of IEC-6 cells is modulated by autocrine mechanisms involving IGF-II and IGFBP-2.
AB - To identify the factors regulating the proliferation of intestinal epithelium, we examined the effects of various growth factors on [3H] thymidine incorporation into the DNA of IEC-6 cells, an intestinal epithelial cell line derived from rat jejunal crypts. Insulin-like growth factor-I (IGF-I), IGF-II, and insulin stimulated the DNA and protein synthesis of IEC-6 cells in serum-free medium supplemented with transferrin, dexamethasone, and BSA (basal medium). Concentration-response experiments demonstrated that IGF-I is approximately 10 times more potent than IGF-II or insulin in producing 2- to 3-fold stimulations of DNA and protein synthesis by IEC-6 cells. In addition, IEC-6 cells proliferated slowly in the basal medium without any added growth factors. Analysis of medium conditioned by IEC-6 cells by gel filtration chromatography, RIA, HPLC, and N-terminal sequencing revealed that IEC-6 cells synthesize and secrete mature, 7,500 mo wt (Mr) IGF-II as well as high Mr forms of IGF-II. In addition, ligand blot, immunoblot, and N-terminal sequence analyses showed that IEC-6 cells produce the 34,000 Mr IGF-binding protein-2 (IGFBP-2). To determine if IGFBP-2 modulates IGF responses in IEC-6 cells, the IGF-I analogs, Des-(1-3)-IGF-I and [GIn3,Ala4,Tyr15,Leu16]IGF-I, both of which have a reduced affinity for IGFBPs, were tested for their effects on IEC-6 cell proliferation. Both analogs exhibited 10-fold greater potency than IGF-I, presumably because endogenously secreted IGFBPs depress IGF-I binding to cell surface receptors. Finally, purified IGFBP-2 attenuated the DNA synthesis of IEC-6 cells in a dose-dependent manner. We conclude that IGFBP-2 secreted by intestinal epithelial cells is capable of limiting the mitogenic activity of both exogenous and endogenous IGFs by blocking the association of the growth factors with cell surface binding sites. These results further suggest that the growth of IEC-6 cells is modulated by autocrine mechanisms involving IGF-II and IGFBP-2.
UR - http://www.scopus.com/inward/record.url?scp=0026808829&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026808829&partnerID=8YFLogxK
M3 - Article
C2 - 1380441
AN - SCOPUS:0026808829
SN - 0013-7227
VL - 131
SP - 1359
EP - 1368
JO - Endocrinology
JF - Endocrinology
IS - 3
ER -