Abstract
Experiments were performed to determine the influence of depolarization on intracellular Ca2+ concentration ([Ca2+](i)) in renal arterioles and the possible role of voltage-gated Ca2+ channels in these responses. Glomeruli with attached arterioles and thick ascending limb were dissected from rabbit kidney and loaded with fura 2. [Ca2+](i) of nonperfused arterioles was monitored using a microscope-based dual-excitation wavelength spectrofluorometry system. Afferent arteriolar [Ca2+](i) averaged 150 ± 11 nM (n = 20) when bathed in Ringer solution containing 1.5 mM Ca2+ and 5 mM K+. Replacement of the normal Ringer solution with one containing 100 mM K+ significantly increased afferent arteriolar [Ca2+](i) to 196 ± 12 nM. This response was abolished in the absence of extracellular Ca2+. In the presence of 1 μM nifedipine, 100 mM K+ elicited a 10% decrease in afferent arteriolar [Ca2+](i) (P < 0.05). Thus nifedipine reversed the afferent [Ca2+](i) response to depolarization, implicating voltage-gated Ca2+ channels as the influx pathway. In contrast to the behavior of afferent arterioles, the 100 mM K+ solution reduced efferent arteriolar [Ca2+](i) from 188 ± 17 to 148 ± 13 nM (n = 11, P < 0.01), an effect that was not influenced by nifedipine. These observations support a role for voltage- gated Ca2+ channels in eliciting depolarization-induced increases in afferent arteriolar [Ca2+](i) while failing to provide evidence for operation of such a mechanism at efferent arteriolar sites.
Original language | English (US) |
---|---|
Pages (from-to) | F677-F685 |
Journal | American Journal of Physiology - Renal Fluid and Electrolyte Physiology |
Volume | 265 |
Issue number | 5 34-5 |
DOIs | |
State | Published - 1993 |
Keywords
- nifedipine
- rabbit
- renal microvasculature
- voltage-gated calcium channels
ASJC Scopus subject areas
- Physiology