Abstract
Self-aligned growth of ultra-short single-walled carbon nanotubes (SWNTs) was realized by utilizing optical near-field effects in a laser-assisted chemical vapor deposition (LCVD) process. By introducing the optical near-field effects, bridge structures containing single suspended SWNT channels were successfully fabricated through the LCVD process at a relatively low substrate temperature. Raman spectroscopy and I-V analyses have been carried out to characterize the SWNT-bridge structures. Numerical simulations using a high-frequency structure simulator revealed that significant enhancement of local heating occurs at metallic electrode tips under laser irradiation; it is about one order of magnitude higher than that in the rest of the electrodes. This technique suggests a novel approach to in situ low-temperature fabrication of SWNT-based devices in a precisely controlled manner, based on the nanoscale heating enhancement induced by the optical near-field effects.
Original language | English (US) |
---|---|
Article number | 025601 |
Journal | Nanotechnology |
Volume | 20 |
Issue number | 2 |
DOIs | |
State | Published - Jan 14 2009 |
ASJC Scopus subject areas
- Bioengineering
- Chemistry(all)
- Materials Science(all)
- Mechanics of Materials
- Mechanical Engineering
- Electrical and Electronic Engineering