Semi-autonomous surgical tasks using a miniature in vivo surgical robot

Jason Dumpert, Amy C. Lehman, Nathan A. Wood, Dmitry Oleynikov, Shane M. Farritor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

27 Scopus citations

Abstract

Natural Orifice Translumenal Endoscopic Surgery (NOTES) is potentially the next step in minimally invasive surgery. This type of procedure could reduce patient trauma through eliminating external incisions, but poses many surgical challenges that are not sufficiently overcome with current flexible endoscopy tools. A robotic platform that attempts to emulate a laparoscopic interface for performing NOTES procedures is being developed to address these challenges. These robots are capable of entering the peritoneal cavity through the upper gastrointestinal tract, and once inserted are not constrained by incisions, allowing for visualization and manipulations throughout the cavity. In addition to using these miniature in vivo robots for NOTES procedures, these devices can also be used to perform semi-autonomous surgical tasks. Such tasks could be useful in situations where the patient is in a location far from a trained surgeon. A surgeon at a remote location could control the robot even if the communication link between surgeon and patient has low bandwidth or very high latency. This paper details work towards using the miniature robot to perform simple surgical tasks autonomously.

Original languageEnglish (US)
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
PublisherIEEE Computer Society
Pages266-269
Number of pages4
ISBN (Print)9781424432967
DOIs
StatePublished - 2009
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: Sep 2 2009Sep 6 2009

Publication series

NameProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009

Conference

Conference31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Country/TerritoryUnited States
CityMinneapolis, MN
Period9/2/099/6/09

ASJC Scopus subject areas

  • Cell Biology
  • Developmental Biology
  • Biomedical Engineering
  • General Medicine

Fingerprint

Dive into the research topics of 'Semi-autonomous surgical tasks using a miniature in vivo surgical robot'. Together they form a unique fingerprint.

Cite this