TY - JOUR
T1 - Serine 64 phosphorylation enhances the antiapoptotic function of Mcl-1
AU - Kobayashi, Shogo
AU - Lee, Sun Hee
AU - Meng, Xue W.
AU - Mott, Justin L.
AU - Bronk, Steven F.
AU - Werneburg, Nathan W.
AU - Craig, Ruth W.
AU - Kaufmann, Scott H.
AU - Gores, Gregory J.
PY - 2007/6/22
Y1 - 2007/6/22
N2 - Mcl-1 is an antiapoptotic Bcl-2 family member that is highly regulated and when dysregulated contributes to cancer. The Mcl-1 protein is phosphorylated at multiple sites in response to different signaling events. Phosphorylations at Thr163 (by ERK) and Ser159 (by glycogen-synthase kinase 3β) have recently been shown to slow and enhance, respectively, Mcl-1 protein turnover. Phosphorylation is also known to be stimulated at other, as-yet uncharacterized sites in the G2/M phase of the cell cycle. Using an S peptide-tagged Mcl-1 T163A mutant, Ser64 was identified as a novel Mcl-1 phosphorylation site by mass spectrometry. Immunoblotting demonstrated that phosphorylation at this site was maximal in cells in G 2/M phase, was enhanced by tumor necrosis factor-α-related apoptosis-inducing ligand (TRAIL) treatment, was blocked by inhibitors of CDK (but not ERK or glycogen-synthase kinase 3β), and was stimulated in vitro by CDK1, CDK2, and JNK1. The half-life of a nonphosphorylatable S64A Mcl-1 mutant was indistinguishable from that of the wild type polypeptide. In contrast, this mutant failed to protect cells from TRAIL-mediated apoptosis, whereas reconstitution with the phosphomimetic S64E Mcl-1 mutant rendered cells TRAIL resistant. This anti-apoptotic phenotype of the S64E Mcl-1 mutant was also associated with enhanced binding to the proapoptotic proteins Bim, Noxa, and Bak. A pharmacological CDK inhibitor that reduced Ser64 phosphorylation also sensitized cells to TRAIL cytotoxicity. Collectively, these observations not only identify G2/M-associated phosphorylation at Ser64 as a critical determinant of the antiapoptotic activity of Mcl-1 but also elucidate a novel mechanism by which CDK1/2 inhibitors can enhance the effectiveness of the cytotoxic cytokine TRAIL.
AB - Mcl-1 is an antiapoptotic Bcl-2 family member that is highly regulated and when dysregulated contributes to cancer. The Mcl-1 protein is phosphorylated at multiple sites in response to different signaling events. Phosphorylations at Thr163 (by ERK) and Ser159 (by glycogen-synthase kinase 3β) have recently been shown to slow and enhance, respectively, Mcl-1 protein turnover. Phosphorylation is also known to be stimulated at other, as-yet uncharacterized sites in the G2/M phase of the cell cycle. Using an S peptide-tagged Mcl-1 T163A mutant, Ser64 was identified as a novel Mcl-1 phosphorylation site by mass spectrometry. Immunoblotting demonstrated that phosphorylation at this site was maximal in cells in G 2/M phase, was enhanced by tumor necrosis factor-α-related apoptosis-inducing ligand (TRAIL) treatment, was blocked by inhibitors of CDK (but not ERK or glycogen-synthase kinase 3β), and was stimulated in vitro by CDK1, CDK2, and JNK1. The half-life of a nonphosphorylatable S64A Mcl-1 mutant was indistinguishable from that of the wild type polypeptide. In contrast, this mutant failed to protect cells from TRAIL-mediated apoptosis, whereas reconstitution with the phosphomimetic S64E Mcl-1 mutant rendered cells TRAIL resistant. This anti-apoptotic phenotype of the S64E Mcl-1 mutant was also associated with enhanced binding to the proapoptotic proteins Bim, Noxa, and Bak. A pharmacological CDK inhibitor that reduced Ser64 phosphorylation also sensitized cells to TRAIL cytotoxicity. Collectively, these observations not only identify G2/M-associated phosphorylation at Ser64 as a critical determinant of the antiapoptotic activity of Mcl-1 but also elucidate a novel mechanism by which CDK1/2 inhibitors can enhance the effectiveness of the cytotoxic cytokine TRAIL.
UR - http://www.scopus.com/inward/record.url?scp=34547092443&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547092443&partnerID=8YFLogxK
U2 - 10.1074/jbc.M610010200
DO - 10.1074/jbc.M610010200
M3 - Article
C2 - 17463001
AN - SCOPUS:34547092443
SN - 0021-9258
VL - 282
SP - 18407
EP - 18417
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 25
ER -