TY - JOUR
T1 - Signatures of somatosensory cortical dysfunction in Alzheimer's disease and HIV-associated neurocognitive disorder
AU - Casagrande, Chloe C.
AU - Wiesman, Alexander I
AU - Schantell, Mikki
AU - Johnson, Hallie J.
AU - Wolfson, Sara L.
AU - O'Neill, Jennifer
AU - Johnson, Craig M.
AU - May, Pamela E.
AU - Swindells, Susan
AU - Murman, Daniel L.
AU - Wilson, Tony W.
N1 - Publisher Copyright:
© The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,distribution, and reproduction in any medium, provided the original work is properly cited.
PY - 2022
Y1 - 2022
N2 - Alzheimer's disease is the most common type of dementia in the general population, while HIV-associated neurocognitive disorder is the most common neurological comorbidity in those infected with HIV and affects between 40 and 70% of this population. Both conditions are associated with cognitive impairment and have been associated with aberrant functioning in sensory cortices, but far less is known about their disparate effects on neural activity. Identifying such disparate effects is important because it may provide critical data on the similarities and differences in the neuropathology underlying cognitive decline in each condition. In the current study, we utilized magnetoencephalography, extensive neuropsychological testing and a paired-pulse somatosensory gating paradigm to probe differences in somatosensory processing in participants from two ongoing magnetoencephalography studies. The resulting participant groups included 27 cognitively normal controls, 26 participants with HIV-associated neurocognitive disorder and 21 amyloid biomarker- confirmed patients with Alzheimer's disease. The data were imaged using a beamformer and voxel time series were extracted to identify the oscillatory dynamics serving somatosensory processing, as well as the amplitude of spontaneous cortical activity preceding stimulation onset. Our findings indicated that people with Alzheimer's disease and HIV-associated neurocognitive disorder exhibit normal somatosensory gating but have distinct aberrations in other elements of somatosensory cortical function. Essentially, those with Alzheimer's disease exhibited accentuated neural responses to somatosensory stimulation, along with spontaneous gamma activity preceding stimulus onset. In contrast, those with HIV-associated neurocognitive disorder exhibited normal responses to somatosensory stimulation but had sharply elevated spontaneous gamma activity prior to stimulus onset. These distinct aberrations may reflect the impact of different neuropathological mechanisms underlying each condition. Further, given the differential pattern of deficits in somatosensory cortical function, these measures may function as unique biomarkers in each condition and be useful in identifying persons with HIV who may go on to develop Alzheimer's disease.
AB - Alzheimer's disease is the most common type of dementia in the general population, while HIV-associated neurocognitive disorder is the most common neurological comorbidity in those infected with HIV and affects between 40 and 70% of this population. Both conditions are associated with cognitive impairment and have been associated with aberrant functioning in sensory cortices, but far less is known about their disparate effects on neural activity. Identifying such disparate effects is important because it may provide critical data on the similarities and differences in the neuropathology underlying cognitive decline in each condition. In the current study, we utilized magnetoencephalography, extensive neuropsychological testing and a paired-pulse somatosensory gating paradigm to probe differences in somatosensory processing in participants from two ongoing magnetoencephalography studies. The resulting participant groups included 27 cognitively normal controls, 26 participants with HIV-associated neurocognitive disorder and 21 amyloid biomarker- confirmed patients with Alzheimer's disease. The data were imaged using a beamformer and voxel time series were extracted to identify the oscillatory dynamics serving somatosensory processing, as well as the amplitude of spontaneous cortical activity preceding stimulation onset. Our findings indicated that people with Alzheimer's disease and HIV-associated neurocognitive disorder exhibit normal somatosensory gating but have distinct aberrations in other elements of somatosensory cortical function. Essentially, those with Alzheimer's disease exhibited accentuated neural responses to somatosensory stimulation, along with spontaneous gamma activity preceding stimulus onset. In contrast, those with HIV-associated neurocognitive disorder exhibited normal responses to somatosensory stimulation but had sharply elevated spontaneous gamma activity prior to stimulus onset. These distinct aberrations may reflect the impact of different neuropathological mechanisms underlying each condition. Further, given the differential pattern of deficits in somatosensory cortical function, these measures may function as unique biomarkers in each condition and be useful in identifying persons with HIV who may go on to develop Alzheimer's disease.
KW - dementia
KW - gamma
KW - magnetoencephalography
KW - oscillations
KW - spontaneous activity
UR - http://www.scopus.com/inward/record.url?scp=85135621124&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85135621124&partnerID=8YFLogxK
U2 - 10.1093/braincomms/fcac169
DO - 10.1093/braincomms/fcac169
M3 - Article
C2 - 35813878
AN - SCOPUS:85135621124
SN - 2632-1297
VL - 4
JO - Brain Communications
JF - Brain Communications
IS - 4
M1 - fcac169
ER -