Simpler mode of inheritance of transcriptional variation in male Drosophila melanogaster

Marta L. Wayne, Marina Telonis-Scott, Lisa M. Bono, Larry Harshman, Artyom Kopp, Sergey V. Nuzhdin, Lauren M. McIntyre

Research output: Contribution to journalArticlepeer-review

43 Scopus citations


Sexual selection drives faster evolution in males. The X chromosome is potentially an important target for sexual selection, because hemizygosity in males permits accumulation of alleles, causing tradeoffs in fitness between sexes. Hemizygosity of the X could cause fundamentally different modes of inheritance between the sexes, with more additive variation in males and more nonadditive variation in females. Indeed, we find that genetic variation for the transcriptome is primarily additive in males but nonadditive in females. As expected, these differences are more pronounced on the X chromosome than the autosomes, but autosomal loci are also affected, possibly because of X-linked transcription factors. These differences may be of evolutionary significance because additive variation responds quickly to selection, whereas nonadditive genetic variation does not. Thus, hemizygosity of the X may underlie much of the faster male evolution of the transcriptome and potentially other phenotypes. Consistent with this prediction, genes that are additive in males and nonadditive in females are overrepresented among genes responding to selection for increased mating speed.

Original languageEnglish (US)
Pages (from-to)18577-18582
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number47
StatePublished - Nov 20 2007


  • Microarray
  • Sexual antagonism
  • Sexual conflict
  • Sexual selection
  • Transcription

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Simpler mode of inheritance of transcriptional variation in male Drosophila melanogaster'. Together they form a unique fingerprint.

Cite this