Abstract
2D material with tunable direct bandgap in the intermediate region (i.e., ≈2–3 eV) is key to the achievement of high efficiency in visible-light optical devices. Herein, a simulation evidence of structure transition of monolayer ZnSe from the experimental pseudohexagonal structure to the tetragonal structure (t-ZnSe) under lateral pressure is shown, suggesting a possible fabrication route to achieve the t-ZnSe monolayer. The as-produced t-ZnSe monolayer exhibits highly tunable bandgap under the biaxial strains, allowing strain engineering of t-ZnSe's bandgap over a wide range of 2–3 eV. Importantly, even under the biaxial strain up to 7%, the t-ZnSe monolayer still keeps its direct-gap property in the desirable range of 2.40–3.17 eV (corresponding to wavelength of green light to ultraviolet). The wide-range tunability of direct bandgap appears to be a unique property of the t-ZnSe monolayer, suggesting its potential application as a light-emitting 2D material in red–green–blue light emission diodes or as complementary light-absorption material in the blue–yellow region for multijunction solar cells. The straddling of the band edge of the t-ZnSe monolayer over the redox potential of water splitting reaction also points to its plausible application for visible-light-driven water splitting.
Original language | English (US) |
---|---|
Article number | 1500290 |
Journal | Advanced Science |
Volume | 2 |
Issue number | 12 |
DOIs | |
State | Published - Dec 2015 |
Keywords
- light emitting and absorption
- strain engineering
- tetragonal ZnSe monolayer
- wide-range tunable direct bandgap
ASJC Scopus subject areas
- Medicine (miscellaneous)
- Chemical Engineering(all)
- Materials Science(all)
- Biochemistry, Genetics and Molecular Biology (miscellaneous)
- Engineering(all)
- Physics and Astronomy(all)