Abstract
Biofilms pose a major challenge to control wound-associated infections. Due to biofilm impenetrability, traditional antimicrobial agents are often ineffective in combating biofilms. Herein, a biphasic scaffold is reported as an antimicrobial delivery system by integrating nanofiber mats with dissolvable microneedle arrays for the effective treatment of bacterial biofilms. Different combinations of antimicrobial agents, including AgNO3, Ga(NO3)3, and vancomycin, are incorporated into nanofiber mats by coaxial electrospinning, which enables sustained delivery of these drugs. The antimicrobial agents-incorporated dissolvable microneedle arrays allow direct penetration of drugs into biofilms. By optimizing the administration strategies, drug combinations, and microneedle densities, biphasic scaffolds are able to eradicate both methicillin-resistant Staphylococcus aureus (MRSA) and MRSA/Pseudomonas aeruginosa blend biofilms in an ex vivo human skin wound infection model without necessitating surgical debridement. Taken together, the combinatorial system comprises of nanofiber mats and microneedle arrays can provide an efficacious delivery of multiple antimicrobial agents for the treatment of bacterial biofilms in wounds.
Original language | English (US) |
---|---|
Article number | 2100135 |
Journal | Advanced Healthcare Materials |
Volume | 10 |
Issue number | 12 |
DOIs | |
State | Published - Jun 23 2021 |
Keywords
- antimicrobial agents
- biofilms
- microneedle arrays
- nanofiber mats
- wounds
ASJC Scopus subject areas
- Biomaterials
- Biomedical Engineering
- Pharmaceutical Science