Simultaneous recording of stimulus-frequency and distortion-product otoacoustic emission input-output functions in human ears

Kim S. Schairer, Douglas H. Keefe

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Stimulus frequency otoacoustic emission (SFOAE) input-output (I/O) functions were elicited in normal-hearing adults using unequal-frequency primaries in equal-level and fixed-suppressor level (Ls) conditions. Responses were repeatable and similar across a range of primary frequency ratios in the fixed-Ls condition. In comparison to equal-frequency primary conditions [Schairer, Fitzpatrick, and Keefe, J. Acoust. Soc. Am. 114, 944-966 (2003)], the unequal-frequency, fixed-Ls condition appears to be more useful for characterizing SFOAE response growth and relating it to basilar-membrane response growth, and for testing the ability to predict audiometric thresholds. Simultaneously recorded distortion-product OAE (DPOAE) I/O functions had higher thresholds than SFOAE I/O functions, and they identified the onset of the nonlinear-distortion mechanism in SFOAEs. DPOAE threshold often corresponded to nonmonotonicities in SFOAE I/O functions. This suggests that the level-dependent nonmonotonicities and associated phase shifts in SFOAE I/O functions were due to varying degrees of cancellation of two sources of SFOAE, such as coherent reflection and distortion mechanisms. Level-dependent noise was observed on-band (at the frequencies of the stimuli) but not off-band, or in the DPOAEs. The variability was observed in ears with normal hearing and ears with cochlear implants. In general, these results indicate the source of the variability is biological, possibly from within the middle ear.

Original languageEnglish (US)
Pages (from-to)818-832
Number of pages15
JournalJournal of the Acoustical Society of America
Volume117
Issue number2
DOIs
StatePublished - Feb 2005

ASJC Scopus subject areas

  • Arts and Humanities (miscellaneous)
  • Acoustics and Ultrasonics

Fingerprint

Dive into the research topics of 'Simultaneous recording of stimulus-frequency and distortion-product otoacoustic emission input-output functions in human ears'. Together they form a unique fingerprint.

Cite this