TY - GEN
T1 - Slip-flow pressure drop in microchannels of general cross-section
AU - Tamayol, A.
AU - Bahrami, M.
AU - Taheri, P.
PY - 2008
Y1 - 2008
N2 - In the present study, a compact analytical model is developed to determine the pressure drop of fully-developed, incompressible, and constant properties slip-flow through arbitrary cross-section microchannels. An averaged first-order Maxwell slip boundary condition is considered. Introducing a relative velocity, the difference between the bulk flow and the boundary velocities, the axial momentum reduces to the Poisson's equation with homogeneous boundary condition. Square root of area is selected as the characteristic length scale. Bahrami et al.'s model, which was developed no-slip boundary condition, is extended to cover the slip-flow regime in this study. The proposed model is a function of geometrical parameters of the channel: cross-sectional area, perimeter, polar moment of inertia and the Knudsen number. The model is successfully validated against existing numerical and experimental data from different sources in the literature for several shapes, including: circular, rectangular, trapezoidal, and double-trapezoidal cross-sections and a variety of gases such as: nitrogen, argon, and helium.
AB - In the present study, a compact analytical model is developed to determine the pressure drop of fully-developed, incompressible, and constant properties slip-flow through arbitrary cross-section microchannels. An averaged first-order Maxwell slip boundary condition is considered. Introducing a relative velocity, the difference between the bulk flow and the boundary velocities, the axial momentum reduces to the Poisson's equation with homogeneous boundary condition. Square root of area is selected as the characteristic length scale. Bahrami et al.'s model, which was developed no-slip boundary condition, is extended to cover the slip-flow regime in this study. The proposed model is a function of geometrical parameters of the channel: cross-sectional area, perimeter, polar moment of inertia and the Knudsen number. The model is successfully validated against existing numerical and experimental data from different sources in the literature for several shapes, including: circular, rectangular, trapezoidal, and double-trapezoidal cross-sections and a variety of gases such as: nitrogen, argon, and helium.
UR - http://www.scopus.com/inward/record.url?scp=77952593776&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77952593776&partnerID=8YFLogxK
U2 - 10.1115/ICNMM2008-62199
DO - 10.1115/ICNMM2008-62199
M3 - Conference contribution
AN - SCOPUS:77952593776
SN - 0791848345
SN - 9780791848340
T3 - Proceedings of the 6th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2008
SP - 85
EP - 93
BT - Proceedings of the 6th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2008
T2 - 6th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2008
Y2 - 23 June 2008 through 25 June 2008
ER -