Small-kernel superresolution methods for microscanning imaging systems

Jiazheng Shi, Stephen E. Reichenbach, James D. Howe

Research output: Contribution to journalArticle

30 Scopus citations

Abstract

Two computationally efficient methods for superresolution reconstruction and restoration of microscanning imaging systems are presented. Microscanning creates multiple low-resolution images with slightly different sample-scene phase shifts. The digital processing methods developed here combine the low-resolution images to produce an image with higher pixel resolution (i.e., superresolution) and higher fidelity. The methods implement reconstruction to increase resolution and restoration to improve fidelity in one-pass convolution with a small kernel. One method uses a small-kernel Wiener filter and the other method uses a parametric cubic convolution filter. Both methods are based on an end-to-end, continuous-discrete-continuous microscanning imaging system model. Because the filters are constrained to small spatial kernels they can be efficiently applied by convolution and are amenable to adaptive processing and to parallel processing. Experimental results with simulated imaging and with real microscanned images indicate that the small-kernel methods efficiently and effectively increase resolution and fidelity.

Original languageEnglish (US)
Pages (from-to)1203-1214
Number of pages12
JournalApplied optics
Volume45
Issue number6
DOIs
StatePublished - Feb 20 2006

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Engineering (miscellaneous)
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Small-kernel superresolution methods for microscanning imaging systems'. Together they form a unique fingerprint.

  • Cite this