TY - JOUR
T1 - snRNA 3′ End Processing by a CPSF73-Containing Complex Essential for Development in Arabidopsis
AU - Liu, Yunfeng
AU - Li, Shengjun
AU - Chen, Yuan
AU - Kimberlin, Athen N.
AU - Cahoon, Edgar B.
AU - Yu, Bin
N1 - Funding Information:
This work is supported by a National Science Foundation Grant MCB-1121193 (to BY). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
PY - 2016/10/25
Y1 - 2016/10/25
N2 - Uridine-rich small nuclear RNAs (snRNAs) are the basal components of the spliceosome and play essential roles in splicing. The biogenesis of the majority of snRNAs involves 3′ end endonucleolytic cleavage of the nascent transcript from the elongating DNA-dependent RNA ploymerase II. However, the protein factors responsible for this process remain elusive in plants. Here, we show that DEFECTIVE in snRNA PROCESSING 1 (DSP1) is an essential protein for snRNA 3′ end maturation in Arabidopsis. A hypomorphic dsp1-1 mutation causes pleiotropic developmental defects, impairs the 3′ end processing of snRNAs, increases the levels of snRNA primary transcripts (pre-snRNAs), and alters the occupancy of Pol II at snRNA loci. In addition, DSP1 binds snRNA loci and interacts with Pol-II in a DNA/RNA-dependent manner. We further show that DSP1 forms a conserved complex, which contains at least four additional proteins, to catalyze snRNA 3′ end maturation in Arabidopsis. The catalytic component of this complex is likely the cleavage and polyadenylation specificity factor 73 kDa-I (CSPF73-I), which is the nuclease cleaving the pre-mRNA 3′ end. However, the DSP1 complex does not affect pre-mRNA 3′ end cleavage, suggesting that plants may use different CPSF73-I-containing complexes to process snRNAs and pre-mRNAs. This study identifies a complex responsible for the snRNA 3′ end maturation in plants and uncovers a previously unknown function of CPSF73 in snRNA maturation.
AB - Uridine-rich small nuclear RNAs (snRNAs) are the basal components of the spliceosome and play essential roles in splicing. The biogenesis of the majority of snRNAs involves 3′ end endonucleolytic cleavage of the nascent transcript from the elongating DNA-dependent RNA ploymerase II. However, the protein factors responsible for this process remain elusive in plants. Here, we show that DEFECTIVE in snRNA PROCESSING 1 (DSP1) is an essential protein for snRNA 3′ end maturation in Arabidopsis. A hypomorphic dsp1-1 mutation causes pleiotropic developmental defects, impairs the 3′ end processing of snRNAs, increases the levels of snRNA primary transcripts (pre-snRNAs), and alters the occupancy of Pol II at snRNA loci. In addition, DSP1 binds snRNA loci and interacts with Pol-II in a DNA/RNA-dependent manner. We further show that DSP1 forms a conserved complex, which contains at least four additional proteins, to catalyze snRNA 3′ end maturation in Arabidopsis. The catalytic component of this complex is likely the cleavage and polyadenylation specificity factor 73 kDa-I (CSPF73-I), which is the nuclease cleaving the pre-mRNA 3′ end. However, the DSP1 complex does not affect pre-mRNA 3′ end cleavage, suggesting that plants may use different CPSF73-I-containing complexes to process snRNAs and pre-mRNAs. This study identifies a complex responsible for the snRNA 3′ end maturation in plants and uncovers a previously unknown function of CPSF73 in snRNA maturation.
UR - http://www.scopus.com/inward/record.url?scp=84995579305&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84995579305&partnerID=8YFLogxK
U2 - 10.1371/journal.pbio.1002571
DO - 10.1371/journal.pbio.1002571
M3 - Article
C2 - 27780203
AN - SCOPUS:84995579305
VL - 14
JO - PLoS Biology
JF - PLoS Biology
SN - 1544-9173
IS - 10
M1 - e1002571
ER -