TY - JOUR
T1 - Spatial Imaging and Screening for Regime Shifts
AU - Uden, Daniel R.
AU - Twidwell, Dirac
AU - Allen, Craig R.
AU - Jones, Matthew O.
AU - Naugle, David E.
AU - Maestas, Jeremy D.
AU - Allred, Brady W.
N1 - Publisher Copyright:
© Copyright © 2019 Uden, Twidwell, Allen, Jones, Naugle, Maestas and Allred.
PY - 2019/10/29
Y1 - 2019/10/29
N2 - Screening is a strategy for detecting undesirable change prior to manifestation of symptoms or adverse effects. Although the well-recognized utility of screening makes it commonplace in medicine, it has yet to be implemented in ecosystem management. Ecosystem management is in an era of diagnosis and treatment of undesirable change, and as a result, remains more reactive than proactive and unable to effectively deal with today's plethora of non-stationary conditions. In this paper, we introduce spatial imaging-based screening to ecology. We link advancements in spatial resilience theory, data, and technological and computational capabilities and power to detect regime shifts (i.e., vegetation state transitions) that are known to be detrimental to human well-being and ecosystem service delivery. With a state-of-the-art landcover dataset and freely available, cloud-based, geospatial computing platform, we screen for spatial signals of the three most iconic vegetation transitions studied in western USA rangelands: (1) erosion and desertification; (2) woody encroachment; and (3) annual exotic grass invasion. For a series of locations that differ in ecological complexity and geographic extent, we answer the following questions: (1) Which regime shift is expected or of greatest concern? (2) Can we detect a signal associated with the expected regime shift? (3) If detected, is the signal transient or persistent over time? (4) If detected and persistent, is the transition signal stationary or non-stationary over time? (5) What other signals do we detect? Our approach reveals a powerful and flexible methodology, whereby professionals can use spatial imaging to verify the occurrence of alternative vegetation regimes, image the spatial boundaries separating regimes, track the magnitude and direction of regime shift signals, differentiate persistent and stationary transition signals that warrant continued screening from more concerning persistent and non-stationary transition signals, and leverage disciplinary strength and resources for more targeted diagnostic testing (e.g., inventory and monitoring) and treatment (e.g., management) of regime shifts. While the rapid screening approach used here can continue to be implemented and refined for rangelands, it has broader implications and can be adapted to other ecological systems to revolutionize the information space needed to better manage critical transitions in nature.
AB - Screening is a strategy for detecting undesirable change prior to manifestation of symptoms or adverse effects. Although the well-recognized utility of screening makes it commonplace in medicine, it has yet to be implemented in ecosystem management. Ecosystem management is in an era of diagnosis and treatment of undesirable change, and as a result, remains more reactive than proactive and unable to effectively deal with today's plethora of non-stationary conditions. In this paper, we introduce spatial imaging-based screening to ecology. We link advancements in spatial resilience theory, data, and technological and computational capabilities and power to detect regime shifts (i.e., vegetation state transitions) that are known to be detrimental to human well-being and ecosystem service delivery. With a state-of-the-art landcover dataset and freely available, cloud-based, geospatial computing platform, we screen for spatial signals of the three most iconic vegetation transitions studied in western USA rangelands: (1) erosion and desertification; (2) woody encroachment; and (3) annual exotic grass invasion. For a series of locations that differ in ecological complexity and geographic extent, we answer the following questions: (1) Which regime shift is expected or of greatest concern? (2) Can we detect a signal associated with the expected regime shift? (3) If detected, is the signal transient or persistent over time? (4) If detected and persistent, is the transition signal stationary or non-stationary over time? (5) What other signals do we detect? Our approach reveals a powerful and flexible methodology, whereby professionals can use spatial imaging to verify the occurrence of alternative vegetation regimes, image the spatial boundaries separating regimes, track the magnitude and direction of regime shift signals, differentiate persistent and stationary transition signals that warrant continued screening from more concerning persistent and non-stationary transition signals, and leverage disciplinary strength and resources for more targeted diagnostic testing (e.g., inventory and monitoring) and treatment (e.g., management) of regime shifts. While the rapid screening approach used here can continue to be implemented and refined for rangelands, it has broader implications and can be adapted to other ecological systems to revolutionize the information space needed to better manage critical transitions in nature.
KW - Google Earth Engine
KW - diagnosis
KW - early warning indicator
KW - proactive management
KW - rangeland analysis platform
KW - resilience
KW - spatial resilience
KW - treatment
UR - http://www.scopus.com/inward/record.url?scp=85075255634&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075255634&partnerID=8YFLogxK
U2 - 10.3389/fevo.2019.00407
DO - 10.3389/fevo.2019.00407
M3 - Article
AN - SCOPUS:85075255634
SN - 2296-701X
VL - 7
JO - Frontiers in Ecology and Evolution
JF - Frontiers in Ecology and Evolution
M1 - 407
ER -