@inproceedings{32c999d025a04c8eb658655b95a54bf9,
title = "Spatial-Temporal Scientific Data Clustering via Deep Convolutional Neural Network",
abstract = "We explore the usage of deep convolutional neural network for clustering the time steps of a spatial-temporal scientific dataset. Our approach first takes the scientific dataset as training data and trains a deep convolutional autoencoder. A low-dimensional feature space or latent space can be extracted by inferencing the encoding part of the network. As a result, each time step is transformed into a feature descriptor that can be compared with each other in the feature space. In this way, we can cluster time steps according to their feature descriptors, and each group of time steps has a similar characterization. We demonstrate the effectiveness of our approach using a real-world simulation dataset of water contamination. Multiple variables and their combinations of this dataset are fed into our approach. The trained network enables the clustering of the time steps and facilitates scientists to examine their large spatial-temporal datasets.",
keywords = "autoencoder, clustering, deep convolutional neural network, feature descriptor, spatial-temporal scientific data",
author = "Jianxin Sun and Chunxia Wu and Yufeng Ge and Yusong Li and Hongfeng Yu",
note = "Publisher Copyright: {\textcopyright} 2019 IEEE.; 2019 IEEE International Conference on Big Data, Big Data 2019 ; Conference date: 09-12-2019 Through 12-12-2019",
year = "2019",
month = dec,
doi = "10.1109/BigData47090.2019.9006507",
language = "English (US)",
series = "Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "3424--3429",
editor = "Chaitanya Baru and Jun Huan and Latifur Khan and Hu, {Xiaohua Tony} and Ronay Ak and Yuanyuan Tian and Roger Barga and Carlo Zaniolo and Kisung Lee and Ye, {Yanfang Fanny}",
booktitle = "Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019",
}