TY - JOUR
T1 - Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier
AU - Veiseh, Omid
AU - Sun, Conroy
AU - Fang, Chen
AU - Bhattarai, Narayan
AU - Gunn, Jonathan
AU - Kievit, Forrest
AU - Du, Kim
AU - Pullar, Barbara
AU - Lee, Donghoon
AU - Ellenbogen, Richard G.
AU - Olson, Jim
AU - Zhang, Miqin
PY - 2009/8/1
Y1 - 2009/8/1
N2 - Nanoparticle-based platforms have drawn considerable attention for their potential effect on oncology and other biomedical fields. However, their in vivo application is challenged by insufficient accumulation and retention within tumors due to limited specificity to the target, and an inability to traverse biological barriers. Here, we present a nanoprobe that shows an ability to cross the blood-brain barrier and specifically target brain tumors in a genetically engineered mouse model, as established through in vivo magnetic resonance and biophotonic imaging, and histologic and biodistribution analyses. The nanoprobe is comprised of an iron oxide nanoparticle coated with biocompatible polyethylene glycol-grafted chitosan copolymer, to which a tumor-targeting agent, chlorotoxin, and a near-IR fluorophore are conjugated. The nanoprobe shows an innocuous toxicity profile and sustained retention in tumors. With the versatile affinity of the targeting ligand and the flexible conjugation chemistry for alternative diagnostic and therapeutic agents, this nanoparticle platform can be potentially used for the diagnosis and treatment of a variety of tumor types.
AB - Nanoparticle-based platforms have drawn considerable attention for their potential effect on oncology and other biomedical fields. However, their in vivo application is challenged by insufficient accumulation and retention within tumors due to limited specificity to the target, and an inability to traverse biological barriers. Here, we present a nanoprobe that shows an ability to cross the blood-brain barrier and specifically target brain tumors in a genetically engineered mouse model, as established through in vivo magnetic resonance and biophotonic imaging, and histologic and biodistribution analyses. The nanoprobe is comprised of an iron oxide nanoparticle coated with biocompatible polyethylene glycol-grafted chitosan copolymer, to which a tumor-targeting agent, chlorotoxin, and a near-IR fluorophore are conjugated. The nanoprobe shows an innocuous toxicity profile and sustained retention in tumors. With the versatile affinity of the targeting ligand and the flexible conjugation chemistry for alternative diagnostic and therapeutic agents, this nanoparticle platform can be potentially used for the diagnosis and treatment of a variety of tumor types.
UR - http://www.scopus.com/inward/record.url?scp=68049144958&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=68049144958&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-09-1157
DO - 10.1158/0008-5472.CAN-09-1157
M3 - Article
C2 - 19638572
AN - SCOPUS:68049144958
SN - 0008-5472
VL - 69
SP - 6200
EP - 6207
JO - Cancer Research
JF - Cancer Research
IS - 15
ER -